部分背包问题(贪心法)

时间: 2024-07-19 09:00:43 浏览: 178
部分背包问题(也称为贪婪算法或0-1背包问题的变种)是一个优化问题,其中目标是在给定的一组物品中选择一部分,使得这些物品的总价值最大,但每个物品只能取一次,且背包的容量有限。在贪婪算法中,我们通常按照每个物品单位重量的价值来进行选择,即每次都选择当前单位重量价值最高的物品放入背包,直到达到背包容量或者所有物品都考虑过。 这种方法不是总是最优解,因为贪婪策略可能无法保证得到全局最大价值。例如,在某些情况下,先选择一些小价值但高权重的物品可能会导致后期无法装入更有价值的大件物品。部分背包问题可以通过动态规划来找到最佳解,而贪婪法更多用于启发式求解,速度快但不保证结果最优。
相关问题

01背包问题贪心法源代码

01背包问题是一个经典的动态规划问题,贪心法并不是最优解,但可以作为一种启发式算法来解决问题。下面是01背包问题的贪心法源代码: ``` #include<bits/stdc++.h> using namespace std; struct node{ int w,v; }a[1005]; bool cmp(node a,node b){ return a.v>b.v; } int main(){ int n,m; cin>>n>>m; for(int i=0;i<n;i++){ cin>>a[i].w>>a[i].v; } sort(a,a+n,cmp); int ans=0; for(int i=0;i<n;i++){ if(m>=a[i].w){ ans+=a[i].v; m-=a[i].w; } else{ ans+=m*a[i].v/a[i].w; break; } } cout<<ans<<endl; return 0; } ``` 在这个代码中,我们首先定义了一个结构体 node 来存储每个物品的重量和价值。然后,我们按照价值从大到小的顺序对物品进行排序。接着,我们从价值最大的物品开始,依次将它们放入背包中,直到背包装满为止。如果当前物品无法全部放入背包中,我们就将它放入背包的一部分,然后结束循环。 这个贪心算法的正确性来自于每个物品的单位价值,即价值与重量的比值。我们按照单位价值从大到小的顺序选择物品,可以保证每次选择的物品都是当前最优的选择。

贪心法求解部分背包问题C语言

部分背包问题是指,有一个背包容量为C,有n个物品,每个物品有一个重量wi和一个价值vi,可以取走物品的一部分,求背包所能装下的最大价值。 贪心法求解部分背包问题的思路是,按照每个物品的单位重量价值从大到小排序,然后依次装入物品,直到背包装满为止。如果当前物品无法完全装入背包,则将其部分装入,直到背包装满。 以下是部分背包问题的C语言代码实现: ```c #include <stdio.h> #include <stdlib.h> typedef struct { double weight; // 物品重量 double value; // 物品价值 double unit_value; // 物品单位重量价值 } Item; // 按照物品单位重量价值从大到小排序 int cmp(const void *a, const void *b) { Item *item1 = (Item *)a; Item *item2 = (Item *)b; return (item2->unit_value - item1->unit_value) > 0 ? 1 : -1; } int main() { int n = 5; // 物品数量 int C = 10; // 背包容量 Item items[n]; items[0] = (Item){2, 6, 0}; items[1] = (Item){2, 3, 0}; items[2] = (Item){6, 5, 0}; items[3] = (Item){5, 4, 0}; items[4] = (Item){4, 6, 0}; // 计算每个物品的单位重量价值 for (int i = 0; i < n; i++) { items[i].unit_value = items[i].value / items[i].weight; } // 按照物品单位重量价值从大到小排序 qsort(items, n, sizeof(Item), cmp); double value = 0; // 背包所能装下的最大价值 int i = 0; // 当前物品下标 while (C > 0 && i < n) { if (C >= items[i].weight) { value += items[i].value; C -= items[i].weight; } else { value += C * items[i].unit_value; C = 0; } i++; } printf("背包所能装下的最大价值为%f\n", value); return 0; } ``` 在实现中,首先定义了一个Item结构体来存储物品的重量、价值和单位重量价值。然后计算每个物品的单位重量价值,并按照从大到小的顺序排序。最后依次取出每个物品,如果能够完全装入背包,则将其全部装入;否则,将其部分装入,直到背包装满为止。最终输出背包所能装下的最大价值。
阅读全文

相关推荐

最新推荐

recommend-type

算法分析课程设计——背包问题

《算法分析与软件设计》课程设计报告展示了如何利用贪心法和回溯法解决01背包问题。01背包问题是一个经典的组合优化问题,旨在在不超过背包容量限制的前提下,选择物品以最大化总价值。在这个问题中,物品是不可分割...
recommend-type

动态规划法、贪心算法、回溯法、分支限界法解决0-1背包

0-1背包问题要求物品要么全选要么不选,贪心算法无法处理这种情况,可能导致部分背包容量被浪费,从而无法达到最优。 3. **回溯法**: 回溯法是一种试探性的搜索策略,它尝试所有可能的解决方案,当发现某个解决...
recommend-type

哈夫曼编码 回溯法 0-1背包问题 装载问题 VC

实验中还对比了穷举法、动态规划法和贪心法在解决0-1背包问题上的差异,这三种方法各有优劣:穷举法简单但效率低;动态规划利用子问题的最优解,避免重复计算,效率较高;贪心法则是在每一步选取当前最优,但不一定...
recommend-type

算法设计文档(含回溯法 递归法 贪心算法 背包...)

算法设计文档涵盖了多种重要的算法,包括回溯法、递归法、贪心算法以及背包问题,这些都是在计算机科学和软件工程中广泛使用的解决问题的方法。 **回溯法**是一种试探性的解决问题方法,常用于在大量可能解中寻找...
recommend-type

0-1背包问题的贪心、动态规划、回溯算法

"0-1"背包问题是运筹学和计算机科学中一个经典的问题,旨在解决如何从多个物品中选择一部分,使得总价值最大且总重量不超过背包容量的限制。该问题有多种解决方法,本文将对贪心算法、动态规划算法和回溯算法进行...
recommend-type

Haskell编写的C-Minus编译器针对TM架构实现

资源摘要信息:"cminus-compiler是一个用Haskell语言编写的C-Minus编程语言的编译器项目。C-Minus是一种简化版的C语言,通常作为教学工具使用,帮助学生了解编程语言和编译器的基本原理。该编译器的目标平台是虚构的称为TM的体系结构,尽管它并不对应真实存在的处理器架构,但这样的设计可以专注于编译器的逻辑而不受特定硬件细节的限制。作者提到这个编译器是其编译器课程的作业,并指出代码可以在多个方面进行重构,尽管如此,他对于编译器的完成度表示了自豪。 在编译器项目的文档方面,作者提供了名为doc/report1.pdf的文件,其中可能包含了关于编译器设计和实现的详细描述,以及如何构建和使用该编译器的步骤。'make'命令在简单的使用情况下应该能够完成所有必要的构建工作,这意味着项目已经设置好了Makefile文件来自动化编译过程,简化用户操作。 在Haskell语言方面,该编译器项目作为一个实际应用案例,可以作为学习Haskell语言特别是其在编译器设计中应用的一个很好的起点。Haskell是一种纯函数式编程语言,以其强大的类型系统和惰性求值特性而闻名。这些特性使得Haskell在处理编译器这种需要高度抽象和符号操作的领域中非常有用。" 知识点详细说明: 1. C-Minus语言:C-Minus是C语言的一个简化版本,它去掉了许多C语言中的复杂特性,保留了基本的控制结构、数据类型和语法。通常用于教学目的,以帮助学习者理解和掌握编程语言的基本原理以及编译器如何将高级语言转换为机器代码。 2. 编译器:编译器是将一种编程语言编写的源代码转换为另一种编程语言(通常为机器语言)的软件。编译器通常包括前端(解析源代码并生成中间表示)、优化器(改进中间表示的性能)和后端(将中间表示转换为目标代码)等部分。 3. TM体系结构:在这个上下文中,TM可能是一个虚构的计算机体系结构。它可能被设计来模拟真实处理器的工作原理,但不依赖于任何特定硬件平台的限制,有助于学习者专注于编译器设计本身,而不是特定硬件的技术细节。 4. Haskell编程语言:Haskell是一种高级的纯函数式编程语言,它支持多种编程范式,包括命令式、面向对象和函数式编程。Haskell的强类型系统、模式匹配、惰性求值等特性使得它在处理抽象概念如编译器设计时非常有效。 5. Make工具:Make是一种构建自动化工具,它通过读取Makefile文件来执行编译、链接和清理等任务。Makefile定义了编译项目所需的各种依赖关系和规则,使得项目构建过程更加自动化和高效。 6. 编译器开发:编译器的开发涉及语言学、计算机科学和软件工程的知识。它需要程序员具备对编程语言语法和语义的深入理解,以及对目标平台架构的了解。编译器通常需要进行详细的测试,以确保它能够正确处理各种边缘情况,并生成高效的代码。 通过这个项目,学习者可以接触到编译器从源代码到机器代码的转换过程,学习如何处理词法分析、语法分析、语义分析、中间代码生成、优化和目标代码生成等编译过程的关键步骤。同时,该项目也提供了一个了解Haskell语言在编译器开发中应用的窗口。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【数据整理秘籍】:R语言与tidyr包的高效数据处理流程

![【数据整理秘籍】:R语言与tidyr包的高效数据处理流程](https://www.lecepe.fr/upload/fiches-formations/visuel-formation-246.jpg) # 1. 数据整理的重要性与R语言介绍 数据整理是数据科学领域的核心环节之一,对于后续的数据分析、模型构建以及决策制定起到至关重要的作用。高质量的数据整理工作,能够保证数据分析的准确性和可靠性,为数据驱动的业务决策提供坚实的数据基础。 在众多数据分析工具中,R语言因其强大的统计分析能力、丰富的数据处理包以及开放的社区支持而广受欢迎。R语言不仅仅是一种编程语言,它更是一个集数据处理、统
recommend-type

在使用STEP7编程环境为S7-300 PLC进行编程时,如何正确分配I/O接口地址并利用SM信号模板进行编址?

在西门子STEP7编程环境中,对于S7-300系列PLC的I/O接口地址分配及使用SM信号模板的编址是一个基础且至关重要的步骤。正确地进行这一过程可以确保PLC与现场设备之间的正确通信和数据交换。以下是具体的设置步骤和注意事项: 参考资源链接:[PLC STEP7编程环境:菜单栏与工具栏功能详解](https://wenku.csdn.net/doc/3329r82jy0?spm=1055.2569.3001.10343) 1. **启动SIMATIC Manager**:首先,启动STEP7软件,并通过SIMATIC Manager创建或打开一个项目。 2. **硬件配置**:在SIM
recommend-type

水电模拟工具HydroElectric开发使用Matlab

资源摘要信息:"该文件是一个使用MATLAB开发的水电模拟应用程序,旨在帮助用户理解和模拟HydroElectric实验。" 1. 水电模拟的基础知识: 水电模拟是一种利用计算机技术模拟水电站的工作过程和性能的工具。它可以模拟水电站的水力、机械和电气系统,以及这些系统的相互作用和影响。水电模拟可以帮助我们理解水电站的工作原理,预测和优化其性能,以及评估和制定运行策略。 2. MATLAB在水电模拟中的应用: MATLAB是一种高性能的数值计算和可视化软件,广泛应用于工程、科学和数学领域。在水电模拟中,MATLAB可以用于建立模型、模拟、分析和可视化水电站的性能。MATLAB提供了强大的数学函数库和图形工具箱,可以方便地进行复杂的计算和数据可视化。 3. HydroElectric实验的模拟: HydroElectric实验是一种模拟水电站工作的实验,通常包括水轮机、发电机、水道、负荷等部分。在这个实验中,我们可以模拟各种运行条件下的水电站性能,如不同水流量、不同负荷等。 4. MATLAB开发的水电模拟应用程序的使用: 使用MATLAB开发的水电模拟应用程序,用户可以方便地设置模拟参数,运行模拟,查看模拟结果。应用程序可能包括用户友好的界面,用户可以通过界面输入各种参数,如水流量、负荷等。然后,应用程序将根据输入的参数,进行计算,模拟水电站的工作过程和性能,最后将结果以图表或数据的形式展示给用户。 5. MATLAB的高级功能在水电模拟中的应用: MATLAB提供了丰富的高级功能,如优化工具箱、神经网络工具箱、符号计算等,这些功能可以进一步提高水电模拟的效果。例如,使用优化工具箱,我们可以找到最佳的工作参数,使水电站的性能最优化。使用神经网络工具箱,我们可以建立更复杂的模型,更准确地模拟水电站的工作过程。使用符号计算,我们可以处理更复杂的数学问题,如求解非线性方程。 6. 水电模拟的未来发展方向: 随着计算机技术的不断发展,水电模拟的应用前景广阔。未来,水电模拟可能会更加注重模型的精确度和复杂度,更多地运用人工智能、大数据等先进技术,以提高模拟的效率和准确性。此外,水电模拟也可能更多地应用于其他领域,如能源管理、环境影响评估等。