for i, det in enumerate(pred): # per image seen += 1 if webcam: # batch_size >= 1 p, im0, frame = path[i], im0s[i].copy(), dataset.count s += f'{i}: '
时间: 2024-02-10 10:24:51 浏览: 166
在这段代码中,`for i, det in enumerate(pred):`是一个循环语句,用于遍历`pred`列表中的元素。`pred`是一个列表,其中包含了一些检测结果。
在循环的每一次迭代中,`i`是循环变量,表示当前元素在列表中的索引位置,`det`是当前元素的值。
接下来的代码逐步执行以下操作:
- `seen += 1`:增加一个计数器`seen`的值。
- `if webcam:`:检查条件`webcam`的值是否为真。如果是,则执行以下代码块,否则跳过。
- `p, im0, frame = path[i], im0s[i].copy(), dataset.count`:将`path[i]`的值赋给变量`p`,将`im0s[i].copy()`的值赋给变量`im0`,将`dataset.count`的值赋给变量`frame`。
- `s += f'{i}: '`:将字符串`f'{i}: '`添加到变量`s`的末尾。
这段代码的作用是在循环中对每个图像进行处理,并根据条件来执行一些特定的操作。在每次迭代中,它会增加计数器的值,并根据条件执行一些特定的操作。最后,它会将一个包含索引值的字符串添加到变量`s`中。
相关问题
解释 for i, det in enumerate(pred): # detections per image 遍历一个batch中的每个图片 if webcam: # batch_size >= 1 p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count else: p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
这段代码的作用是遍历模型输出的预测结果,并对每个预测框进行处理。
`pred` 是模型输出的预测框信息张量,其中包含了经过 NMS 处理后的预测框信息。这段代码使用 `enumerate()` 函数遍历了 `pred` 中的每个元素,即每个预测框。
`if webcam:` 语句判断当前是否为实时视频流处理模式。如果是实时视频流处理模式,则表示 `pred` 中包含了多个图像的预测结果,需要逐个处理。具体地,`p, s, im0, frame` 分别表示当前预测框所属的图像路径、标注信息、原始图像张量和图像计数器。
如果不是实时视频流处理模式,则表示 `pred` 中仅包含一个图像的预测结果,因此 `p, s, im0, frame` 直接赋值为图像路径、标注信息、原始图像张量和图像计数器。
在接下来的代码中,将对每个预测框进行处理和可视化。
代码解释# Process detections for i, det in enumerate(pred): # detections per image if webcam: # batch_size >= 1 p, s, im0 = path[i], '%g: ' % i, im0s[i].copy() else: p, s, im0 = path, '', im0s save_path = str(Path(out) / Path(p).name) s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += '%g %ss, ' % (n, names[int(c)]) # add to string # Write results for *xyxy, conf, cls in det: if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh with open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file: file.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format if save_img or view_img: # Add bbox to image label = '%s %.2f' % (names[int(cls)], conf) if label is not None: if (label.split())[0] == 'person': people_coords.append(xyxy) # plot_one_box(xyxy, im0, line_thickness=3) plot_dots_on_people(xyxy, im0) # Plot lines connecting people distancing(people_coords, im0, dist_thres_lim=(100, 150)) # Print time (inference + NMS) print('%sDone. (%.3fs)' % (s, t2 - t1)) # Stream results if 1: ui.showimg(im0) if cv2.waitKey(1) == ord('q'): # q to quit raise StopIteration # Save results (image with detections) if save_img: if dataset.mode == 'images': cv2.imwrite(save_path, im0) else: if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release() # release previous video writer fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h)) vid_writer.write(im0)
这段代码是目标检测算法的输出结果处理部分。主要包括以下几个步骤:
1. 对每张图片的检测结果进行处理,包括将检测框从输入图像的尺寸缩放到输出图像的尺寸,并将结果写入文本文件中。
2. 对每个类别的检测结果统计数量,并将数量和类别名称添加到输出字符串中。
3. 对每个检测到的目标绘制边界框,并在边界框上标注类别和置信度。
4. 如果检测到的目标是人,则将其坐标保存在列表中,并在图像上绘制点和连线进行社交距离监测。
5. 将处理后的图像展示出来,并将图像保存到文件中。
阅读全文