支持向量回归预测模型原理
时间: 2023-11-01 10:08:43 浏览: 186
支持向量回归
支持向量机回归(Support Vector Machine Regression, SVMR)是一种基于支持向量机的回归算法,它通过寻找最大化间隔的超平面来进行回归预测。与支持向量机分类(Support Vector Machine Classification, SVMC)相比,SVMR在目标函数和损失函数的定义上有所不同。
在SVMR中,假设输入数据集为{(xi, yi)|xi∈R^n, yi∈R},其中xi是n维的特征向量,yi是对应的标签。SVMR的目标是找到一个超平面,使得所有的训练样本点与该超平面的函数间隔小于等于某个给定的容忍度(ε),同时最小化模型的复杂度。超平面主要由支持向量决定,它们是离超平面最近的训练样本点。
支持向量机回归的预测过程是通过计算输入样本与超平面的距离来进行的。对于一个新的输入样本x,预测值y_hat通过计算x到超平面的函数间隔来得到。这个过程可以表示为 y_hat = w^T * x + b,其中w是超平面的法向量,b是超平面的截距。
SVMR的优点是可以处理非线性关系,并且对于训练数据外的新样本具有较好的泛化能力。然而,SVMR的训练过程较为复杂,需要解决一个凸二次规划问题,且对于大规模数据集的处理可能会有一定的挑战。
阅读全文