深度学习注意力机制怎么写代码,pytroch
时间: 2024-11-18 08:18:29 浏览: 3
深度学习中的GAM注意力机制pytorch实现版本
深度学习中的注意力机制通常用于处理序列数据,特别是在像Transformer这样的模型中。PyTorch是一个流行的Python库,可以用来实现自注意力机制,比如Multi-Head Self-Attention (MHA)。这里简要描述一下如何使用PyTorch编写一个多头注意力模块:
```python
import torch
from torch import nn
class MultiHeadAttention(nn.Module):
def __init__(self, embed_dim, num_heads, dropout=0.1):
super(MultiHeadAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "Embedding dimension must be divisible by the number of heads"
self.WQ = nn.Linear(embed_dim, embed_dim) # Query Linear
self.WK = nn.Linear(embed_dim, embed_dim) # Key Linear
self.WV = nn.Linear(embed_dim, embed_dim) # Value Linear
self.fc_out = nn.Linear(embed_dim, embed_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, query, key, value, attention_mask=None):
batch_size = query.size(0)
Q = self.WQ(query).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) # [batch_size, num_heads, seq_len, head_dim]
K = self.WK(key).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) # [batch_size, num_heads, seq_len, head_dim]
V = self.WV(value).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) # [batch_size, num_heads, seq_len, head_dim]
if attention_mask is not None:
attention_mask = attention_mask.unsqueeze(1).unsqueeze(3) # [batch_size, 1, 1, seq_len]
energy = torch.matmul(Q, K.permute(0, 1, 3, 2)) / torch.sqrt(self.head_dim) # scaled dot product
if attention_mask is not None:
energy = energy.masked_fill_(attention_mask == 0, float('-inf'))
attention_weights = nn.functional.softmax(energy, dim=-1) # softmax for attention weights
context = torch.matmul(attention_weights, V) # [batch_size, num_heads, seq_len, head_dim]
context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.embed_dim) # back to linear sequence
output = self.dropout(self.fc_out(context))
return output, attention_weights
```
在这个例子中,`forward`函数接收查询、键和值向量,并通过线性变换转换为头部表示。之后计算注意力分数并应用softmax得到权重,最后将加权后的值拼接回原始维度并经过dropout和进一步的线性变换。
阅读全文