otsu阈值分割 matlab 代码
时间: 2024-04-25 09:19:31 浏览: 110
Otsu阈值分割是一种自适应的图像二值化方法,它通过最大化类间方差来确定一个最佳的阈值,将图像分为背景和前景两个部分。
以下是使用Matlab实现Otsu阈值分割的代码:
```matlab
function [threshold, segmented_img] = otsu_thresholding(img)
% 转换为灰度图像
gray_img = rgb2gray(img);
% 计算灰度直方图
hist = imhist(gray_img);
% 归一化直方图
hist_norm = hist / numel(gray_img);
% 初始化类内方差和总方差
within_class_var = zeros(256, 1);
total_var = sum((0:255).^2 .* hist_norm) - sum((0:255) .* hist_norm).^2;
% 遍历所有可能的阈值,计算类内方差
for threshold = 0:255
% 计算类内方差
w0 = sum(hist_norm(1:threshold+1));
w1 = 1 - w0;
u0 = sum((0:threshold) .* hist_norm(1:threshold+1)) / w0;
u1 = sum((threshold+1:255) .* hist_norm(threshold+2:256)) / w1;
within_class_var(threshold+1) = w0 * w1 * (u0 - u1)^2;
end
% 找到使类间方差最大的阈值
[~, threshold] = max(within_class_var);
threshold = threshold - 1; % 索引从0开始
% 根据阈值进行分割
segmented_img = imbinarize(gray_img, threshold/255);
end
```
使用方法:
```matlab
img = imread('your_image.jpg');
[threshold, segmented_img] = otsu_thresholding(img);
imshow(segmented_img);
```
希望以上代码能对您有所帮助!
阅读全文