for x in tqdm(test_loader): x = x.to(device) with torch.no_grad(): pred = model(x) preds.append(pred.detach().cpu()) preds = torch.cat(preds, dim=0).numpy()
时间: 2024-02-14 15:30:26 浏览: 95
这段代码是一个用于测试模型的循环。它使用了tqdm库来显示循环进度条。首先,通过迭代test_loader来获取输入数据x。然后,将x移动到指定的设备(通常是GPU)上进行加速计算。接下来,使用torch.no_grad()上下文管理器,禁用梯度计算,以减少内存消耗和计算时间。在此状态下,通过模型(model)对输入数据进行前向传播计算,得到预测结果pred。使用pred.detach().cpu()将预测结果从计算图中分离出来,并将其移动到CPU上。最后,将每个预测结果添加到一个列表preds中。循环结束后,使用torch.cat()函数将所有的预测结果在第0维进行拼接,并转换为NumPy数组形式存储在变量preds中。
相关问题
解释这段代码for epochs in range(Epochs): loss_mean_train = 0 r2_mean_train = 0 loss_mean_test = 0 r2_mean_test = 0 model.train() for data_l in train_loader: seq, labels = data_l seq, labels = seq.to(device), labels.to(device) optimizer.zero_grad() y_pred = model(seq) labels = torch.squeeze(labels) single_loss = 0 r2_train = 0 for k in range(output_size): single_loss = single_loss + loss_function(y_pred[:, k], labels[:, k]) try: r2_train = r2_train+r2_score(y_pred[:, k].cpu().detach().numpy(), labels[:, k].cpu().detach().numpy()) except: r2_train = 0 single_loss /= output_size nn.utils.clip_grad_norm_(model.parameters(), 1.0) single_loss.backward() optimizer.step() r2_train /=output_size loss_mean_train += single_loss.item() r2_mean_train += r2_train scheduler.step() model.eval() for data_l in test_loader: single_loss = 0 r2_test = 0 seq, labels = data_l seq, labels = seq.to(device), labels.to(device) y_pred = model(seq) for k in range(output_size): single_loss = single_loss + loss_function(y_pred[:, k], labels[:, k]) try: r2_test = r2_test+r2_score(y_pred[:, k].cpu().detach().numpy(), labels[:, k].cpu().detach().numpy()) except: r2_test = 0 single_loss_test = single_loss / output_size r2_test /=output_size loss_mean_test += single_loss.item() r2_mean_test +=r2_test
这段代码是一个训练循环。首先,它设置了一些变量(loss_mean_train、r2_mean_train、loss_mean_test、r2_mean_test)用于记录训练和测试期间的损失和R2得分的平均值。
然后,它将模型设置为训练模式,遍历训练数据集中的批次,并对每个批次进行以下操作:
1.将批次中的序列和标签移动到所选设备上(如GPU);
2.将优化器的梯度清零;
3.使用模型对序列进行预测;
4.计算每个标签的损失和R2得分;
5.将每个标签的损失求平均值,并将梯度传递回模型,并通过调用优化器来更新模型的参数。
在训练数据集的每个批次上完成这些操作后,代码会调用scheduler对象来更新学习率。
接下来,代码将模型设置为评估模式并遍历测试数据集中的批次,对每个批次执行以下操作:
1.将批次中的序列和标签移动到所选设备上(如GPU);
2.使用模型对序列进行预测;
3.计算每个标签的损失和R2得分;
4.将每个标签的损失求平均值,并将其添加到测试集的平均损失中,并将R2得分添加到测试集的平均R2得分中。
最后,训练循环结束后,会返回损失和R2得分的平均值,以便在训练期间进行监控和评估。
ef train(args, model, train_loader, test_loader, boardio, textio, checkpoint): #learnable_params = filter(lambda p: p.requires_grad, model.parameters()) #optimizer = torch.optim.Adam(learnable_params) optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-4) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50, 100, 150], gamma=0.1) if checkpoint is not None: min_loss = checkpoint['min_loss'] optimizer.load_state_dict(checkpoint['optimizer']) best_test_loss = np.inf best_test_mse_ab = np.inf best_test_rmse_ab = np.inf best_test_mae_ab = np.inf best_test_r_mse_ab = np.inf best_test_r_rmse_ab = np.inf best_test_r_mae_ab = np.inf best_test_t_mse_ab = np.inf best_test_t_rmse_ab = np.inf best_test_t_mae_ab = np.inf for epoch in range(args.epochs): train_loss, train_mse_ab, train_mae_ab, train_rotations_ab, train_translations_ab, train_rotations_ab_pred, \ train_translations_ab_pred, train_eulers_ab, = train_one_epoch(args.device, model, train_loader, optimizer) test_loss, test_mse_ab, test_mae_ab, test_rotations_ab, test_translations_ab, test_rotations_ab_pred, \ test_translations_ab_pred, test_eulers_ab = test_one_epoch(args.device, model, test_loader)设置动态学习率
这段代码是用来设置动态学习率的。它使用了PyTorch中的lr_scheduler模块,具体来说,使用了MultiStepLR策略。这个策略会在训练过程中根据指定的milestones(里程碑)来调整学习率,每次乘以gamma(衰减因子)。在这个代码中,milestones被设置为[50, 100, 150],gamma被设置为0.1,表示当训练到第50、100、150个epoch时,学习率会分别乘以0.1。这样做可以让模型在训练初期使用较大的学习率,快速收敛,而在训练后期使用较小的学习率,细致调整,避免过拟合。
阅读全文