优先队列式分支限界法求解0-1背包问题时,计算结点上界值时所用算法思想是什么?简单描述该算法思想。

时间: 2024-06-05 22:07:26 浏览: 56
优先队列式分支限界法求解0-1背包问题时,计算结点上界值时通常采用贪心算法思想。简单来说,贪心算法根据背包容量和当前物品的重量、价值比率,选择最优的物品放入背包中,直到背包装满或所有物品都被放入背包为止。具体实现时,需要按照价值比率从高到低将物品排序,然后将物品依次放入背包中,直到放满为止。该算法具有简单高效的特点,适用于求解简单背包、多重背包和部分分数背包等问题。
相关问题

先进先出队列式分支限界法求解0-1背包问题用c++完整代码

以下是使用先进先出队列式分支限界法求解0-1背包问题的完整C代码: ``` #include<stdio.h> #include<stdlib.h> #define MAX_SIZE 100 //物品结构体 typedef struct _item{ int weight; //重量 int value; //价值 int bound; //价值上界 }Item; //结点结构体 typedef struct _node{ int level; //决策树层数 int profit; //当前已获得的价值 int weight; //当前已占用的重量 int bound; //价值上界 int select[MAX_SIZE]; //选择情况 }Node; //队列结构体 typedef struct _queue{ Node elem[MAX_SIZE]; //队列元素 int front; //队头指针 int rear; //队尾指针 }Queue; //初始化队列 void initQueue(Queue *q){ q->front = q->rear = 0; } //判断队列是否为空 int isEmpty(Queue *q){ if(q->front == q->rear) return 1; else return 0; } //进队列 void enqueue(Queue *q, Node n){ if((q->rear+1)%MAX_SIZE == q->front){ printf("Queue is full!\n"); exit(1); } q->elem[q->rear] = n; q->rear = (q->rear+1)%MAX_SIZE; } //出队列 Node dequeue(Queue *q){ if(isEmpty(q)){ printf("Queue is empty!\n"); exit(1); } Node n = q->elem[q->front]; q->front = (q->front+1)%MAX_SIZE; return n; } //计算结点的价值上界 int bound(Node n, int nItems, Item items[]){ int j, k; int totalWeight; int boundValue; //剩余物品全部装入背包 if(n.weight >= items[n.level].weight){ boundValue = n.profit; totalWeight = n.weight; for(j=n.level+1; j<nItems; j++){ if(totalWeight+items[j].weight <= MAX_SIZE){ totalWeight += items[j].weight; boundValue += items[j].value; }else{ k = MAX_SIZE-totalWeight; boundValue += (int)(k*(items[j].value/items[j].weight)); break; } } } //剩余物品不能全部装入背包 else{ boundValue = n.profit+(int)((MAX_SIZE-n.weight)*(items[n.level].value/items[n.level].weight)); totalWeight = MAX_SIZE; } return boundValue; } //先进先出队列式分支限界法 int knapsack(int nItems, Item items[], int capacity, int *solution){ Queue q; Node u, v; int i; initQueue(&q); //初始化根结点 u.level = -1; u.profit = 0; u.weight = 0; //计算根结点的价值上界 u.bound = bound(u, nItems, items); enqueue(&q, u); int maxProfit = 0; while(!isEmpty(&q)){ u = dequeue(&q); //如果结点的价值上界小于当前最优解,则剪枝 if(u.bound <= maxProfit) continue; //扩展结点 if(u.level < nItems-1){ //不选当前物品 v.level = u.level+1; v.weight = u.weight; v.profit = u.profit; v.bound = bound(v, nItems, items); for(i=0; i<=u.level; i++){ v.select[i] = u.select[i]; } v.select[v.level] = 0; enqueue(&q, v); //选当前物品 v.level = u.level+1; v.weight = u.weight+items[v.level].weight; v.profit = u.profit+items[v.level].value; v.bound = bound(v, nItems, items); for(i=0; i<=u.level; i++){ v.select[i] = u.select[i]; } v.select[v.level] = 1; //更新当前最优解 if(v.profit > maxProfit){ maxProfit = v.profit; for(i=0; i<nItems; i++){ solution[i] = v.select[i]; } } //如果结点的价值上界大于当前最优解,则加入队列 if(v.bound > maxProfit){ enqueue(&q, v); } } } return maxProfit; } int main(){ int nItems = 5; Item items[5] = {{2, 12, 0}, {1, 10, 0}, {3, 20, 0}, {2, 15, 0}, {5, 25, 0}}; int capacity = 8; int solution[5] = {0}; int maxProfit = knapsack(nItems, items, capacity, solution); printf("Total profit: %d\n", maxProfit); printf("Solution: "); for(int i=0; i<nItems; i++){ printf("%d ", solution[i]); } printf("\n"); return 0; } ``` 其中,Item结构体存储物品的重量、价值和价值上界;Node结构体存储结点的决策树层数、当前已获得的价值、当前已占用的重量、价值上界和选择情况;Queue结构体为先进先出队列。在主函数中,定义了5个物品,背包容量为8,使用solution数组存储选中的物品,最终输出了最大价值和选择情况。

0-1背包问题要求用分支限界法实现算法用C++ STL最小堆来实现已搜索的解状态空间结点的优先级队列

好的,我可以为您解答这个问题。 0-1背包问题是动态规划问题中的一个经典问题,其目的是在给定一组物品和一个背包容量的情况下,选择一些物品放入背包中,使得背包中物品的总价值最大。而分支限界法是一种搜索算法,它可以通过优先队列来维护搜索状态空间中的结点,从而提高搜索效率。 下面是使用C++ STL最小堆来实现已搜索的解状态空间结点的优先级队列的代码: ```c++ #include <iostream> #include <vector> #include <queue> #include <algorithm> using namespace std; // 物品结构体 struct Item { int weight; // 物品重量 int value; // 物品价值 }; // 结点结构体 struct Node { int level; // 结点所在层数 int profit; // 当前背包中物品的总价值 int weight; // 当前背包中物品的总重量 vector<bool> solution; // 当前背包中物品的选择情况 double bound; // 当前结点的价值上界 bool operator<(const Node& other) const { // 重载小于号,用于STL最小堆排序 return bound < other.bound; } }; // 计算结点的价值上界 double calc_bound(const vector<Item>& items, const Node& node, int capacity) { double bound = node.profit; int weight = node.weight; int level = node.level; while (level < items.size() && weight + items[level].weight <= capacity) { bound += items[level].value; weight += items[level].weight; level++; } if (level < items.size()) { bound += (capacity - weight) * items[level].value / (double)items[level].weight; } return bound; } // 分支限界法求解0-1背包问题 int knapsack(const vector<Item>& items, int capacity) { // 按照单位重量的价值从大到小排序 vector<int> indices(items.size()); iota(indices.begin(), indices.end(), 0); sort(indices.begin(), indices.end(), [&items](int i, int j) { return items[i].value * 1.0 / items[i].weight > items[j].value * 1.0 / items[j].weight; }); // 初始化根结点 Node root = {0, 0, 0, vector<bool>(items.size(), 0), 0}; root.bound = calc_bound(items, root, capacity); // 初始化最小堆 priority_queue<Node> Q; Q.push(root); // 开始搜索 int max_profit = 0; while (!Q.empty()) { Node cur = Q.top(); Q.pop(); if (cur.bound < max_profit) { continue; } if (cur.level == items.size()) { max_profit = max(max_profit, cur.profit); continue; } // 选择当前物品 Node left = cur; left.level++; left.weight += items[indices[left.level - 1]].weight; left.profit += items[indices[left.level - 1]].value; left.solution[indices[left.level - 1]] = true; if (left.weight <= capacity) { left.bound = calc_bound(items, left, capacity); if (left.bound > max_profit) { Q.push(left); } } // 不选择当前物品 Node right = cur; right.level++; right.bound = calc_bound(items, right, capacity); if (right.bound > max_profit) { Q.push(right); } } return max_profit; } int main() { vector<Item> items = {{10, 60}, {20, 100}, {30, 120}}; int capacity = 50; int max_profit = knapsack(items, capacity); cout << "Max Profit: " << max_profit << endl; return 0; } ``` 在这个代码中,我们定义了一个`Item`结构体来存储物品的重量和价值信息,还定义了一个`Node`结构体来存储搜索状态空间中的结点信息。在`Node`结构体中,我们还重载了小于号运算符,这是为了让我们可以使用STL的最小堆来维护搜索结点的优先级。 在`calc_bound`函数中,我们计算了当前结点的价值上界,这是通过贪心的思路来计算的。具体来说,我们首先将当前结点的背包填满,然后尝试将下一个物品放入背包中,直到背包装不下为止。最后,我们将装不下的部分按照单位重量的价值比例来进行计算,从而得到当前结点的价值上界。 在`knapsack`函数中,我们使用了一个最小堆来维护搜索结点的优先级。在每一次循环中,我们取出最小堆中的顶部结点,然后根据当前结点的状态进行分支限界搜索。具体来说,我们分别考虑选择当前物品和不选择当前物品两种情况,然后计算子结点的价值上界,并将符合条件的子结点压入最小堆中。如果当前结点的价值上界小于已搜索到的最大价值,则可以剪枝,继续搜索下一个结点。 最后,在`main`函数中,我们定义了一个简单的0-1背包问题实例,然后调用`knapsack`函数求解,最终输出结果。 希望这个解答能够帮助到您!
阅读全文

相关推荐

最新推荐

recommend-type

动态规划法、贪心算法、回溯法、分支限界法解决0-1背包

分支限界法是另一种用于求解0-1背包问题的搜索算法。它通过广度优先或深度优先的方式遍历解空间树,同时维护一个限界函数来决定是否继续扩展当前节点。在0-1背包问题中,可以使用一个队列(广度优先搜索)或堆(优先...
recommend-type

新型智能电加热器:触摸感应与自动温控技术

资源摘要信息:"具有触摸感应装置的可自动温控的电加热器" 一、行业分类及应用场景 在设备装置领域中,电加热器是广泛应用于工业、商业以及民用领域的一类加热设备。其通过电能转化为热能的方式,实现对气体、液体或固体材料的加热。该类设备的行业分类包括家用电器、暖通空调(HVAC)、工业加热系统以及实验室设备等。 二、功能特性解析 1. 触摸感应装置:该电加热器配备触摸感应装置,意味着它可以通过触摸屏操作,实现更直观、方便的用户界面交互。触摸感应技术可以提供更好的用户体验,操作过程中无需物理按键,降低了机械磨损和故障率,同时增加了设备的现代化和美观性。 2. 自动温控系统:自动温控系统是电加热器中的关键功能之一,它利用温度传感器来实时监测加热环境的温度,并通过反馈控制机制,保持预设温度或在特定温度范围内自动调节加热功率。自动温控不仅提高了加热效率,还能够有效防止过热,增强使用安全。 三、技术原理与关键部件 1. 加热元件:电加热器的核心部件之一是加热元件,常见的类型有电阻丝、电热膜等。通过电流通过加热元件时产生的焦耳热效应实现加热功能。 2. 温度传感器:该传感器负责实时监测环境温度,并将信号传递给控制单元。常用的温度传感器有热电偶、热敏电阻等。 3. 控制单元:控制单元是自动温控系统的大脑,它接收来自温度传感器的信号,并根据设定的温度参数计算出加热元件的功率输出。 四、设计创新与发展趋势 1. 智能化:未来电加热器的设计将更加注重智能化,通过加入Wi-Fi或蓝牙模块,实现远程控制和智能联动,进一步提升用户便利性。 2. 节能环保:随着节能减排意识的增强,电加热器的设计将更加注重能效比的提高,采用更加高效的加热技术和材料,减少能源消耗,降低运行成本。 3. 安全性能:随着安全标准的不断提高,未来的电加热器将配备更多安全保护措施,例如自动断电、过热保护、防爆泄压等。 五、相关应用行业标准与认证 电加热器作为涉及公共安全和环境保护的设备,必须符合相关行业标准和认证,如IEC国际电工委员会标准、UL美国保险商实验室认证等。制造商需在产品上明确标注认证信息,以确保产品安全性。 六、结语 在技术不断进步的今天,电加热器正朝着更加智能化、节能环保和安全稳定的方向发展。具有触摸感应装置的可自动温控电加热器,不仅提升了用户的操作便利性,还通过先进的温控系统确保了加热过程的高效与安全,成为现代设备装置中不可或缺的组成部分。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python内置模块国际化与本地化:打造多语言友好型builtins应用

![Python内置模块国际化与本地化:打造多语言友好型builtins应用](https://img-blog.csdnimg.cn/952723f157c148449d041f24bd31e0c3.png) # 1. Python内置模块概述与国际化基础 ## 1.1 Python语言与国际化需求 Python作为一种广泛应用于Web开发、数据分析、人工智能等领域的编程语言,具有良好的跨平台性和强大的标准库支持。随着全球化的发展,开发者们面临着将软件应用翻译成多种语言的需求,以满足不同地区用户的需求,这就是国际化(Internationalization,通常缩写为i18n)的重要性所
recommend-type

sort从大到小排序c++

在C++中,如果你想对容器(如`vector`, `array`, 或者`deque`等)进行元素的降序(即从大到小)排序,你可以使用标准库中的`std::sort`函数配合自定义的比较函数。`std::sort`默认是升序排序,但是可以通过提供一个比较函数来改变排序顺序。 这里是一个简单的例子,假设你有一个整数向量,并希望按照降序排列: ```cpp #include <algorithm> #include <vector> bool compare(const int& a, const int& b) { return a > b; // 使用大于运算符来进行降序排序 }
recommend-type

社区物流信息管理系统的毕业设计实现

资源摘要信息:"社区物流信息管理系统毕业设计实现" 在信息技术领域,特别是针对特定社区提供的物流信息服务,是近年来随着电子商务和城市配送需求的提升而得到迅速发展的重要领域。本毕业设计实现了一个基于社区的物流信息管理系统,该系统不仅针对社区居民提供了一系列便捷的物流服务,同时通过采用先进的技术架构和开发框架,提高了系统的可维护性和扩展性。以下是对该毕业设计实现中的关键知识点的详细说明: 1. 系统需求与功能设计: - 用户下单与快递公司配送选择:该系统允许社区居民通过平台提交订单,选择合适的快递公司进行配送服务。这一功能的实现涉及到用户界面设计、订单处理逻辑、以及与快递公司接口对接。 - 管理员功能:系统为管理员提供了管理快递公司、快递员和订单等信息的功能。这通常需要实现后台管理系统,包括数据录入、信息编辑、查询统计等功能。 - 快递员配送管理:快递员可以通过系统接收配送任务,并在配送过程中实时更新配送状态。这要求系统具备任务分配、状态跟踪和通信模块。 - 订单状态查询:居民可以通过系统随时查看订单的实时状态和配送详情。这一功能依赖于系统中准确的订单状态管理和用户友好的前端展示。 2. 系统架构与技术选型: - 前后端分离架构:当前流行的前后端分离设计模式被采纳,其优势在于前后端工作可以并行进行,提高开发效率,且在后期维护和更新时更加灵活。 - Vue.js框架:前端使用Vue.js框架进行开发,利用其组件化和数据驱动的特点来构建用户界面,提升用户体验。 - Spring Boot框架:后端则采用了Spring Boot,作为Java应用的开发框架,它简化了企业级应用的配置和开发流程。 - MySQL数据库:系统中所有的数据存储和管理均依赖于MySQL数据库,因其稳定性和高效性,是构建中小规模应用的常见选择。 - RESTful API设计:系统间通信采用RESTful API方式,确保了服务的高可用性和可扩展性,同时也便于前端和第三方应用的接入。 3. 实施计划和时间分配: - 设计和需求分析:在项目初期,需进行周密的市场调研和需求分析,确保系统功能与社区居民和快递公司的实际需求相匹配。 - 系统架构设计:在需求明确之后,进行系统架构的设计工作,包括技术选型、数据流设计、接口定义等。 - 前端开发:前端开发阶段将利用Vue.js进行界面和交互逻辑的实现,包括居民端和管理端的界面设计。 - 后端开发:后端开发者将基于Spring Boot框架搭建系统后端,包括数据库设计、业务逻辑处理、API接口开发等。 4. 结论: 本毕业设计基于社区物流信息管理系统的实现,不仅是一个理论与实践相结合的工程项目,而且满足了现代社区物流服务的需求,为社区居民和快递公司提供了便利。通过采用前后端分离的架构设计,系统具有更好的可维护性和可扩展性,便于未来功能的迭代和性能优化。 总结来看,该毕业设计项目综合运用了现代IT技术,特别是在Web开发领域广泛使用的技术栈,为解决特定领域的问题提供了有效的方案。通过系统化的实施计划,确保了项目的顺利进行和最终目标的实现。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Python内置模块源码探究:深入理解builtins的实现原理

![Python内置模块源码探究:深入理解builtins的实现原理](https://d2vlcm61l7u1fs.cloudfront.net/media/03f/03f8445b-e4d3-4d82-8362-04795b0a417b/php7KkO1E.png) # 1. Python内置模块概述 Python作为一种高级编程语言,其内置模块为开发者提供了极大的便利。内置模块可以被看作是Python语言的基石,它们是语言设计者为了解决常见编程问题而预置在Python标准库中的组件。内置模块不仅包含了一系列的基础函数和数据结构,还涵盖了从文件操作、网络通信到系统管理等方方面面的功能。
recommend-type

u-modal 打开禁止下拉刷新

u-modal是一款轻量级、易用的模态组件库,主要用于在网页上创建弹出窗口或模态对话框。它通常不会直接处理浏览器的下拉刷新功能,因为这是浏览器原生的行为,与模态组件的显示和隐藏无关。 如果你在一个包含u-modal的页面上想要禁用某个区域的下拉刷新,你需要在相关的DOM元素上添加自定义事件监听,比如阻止默认的`touchmove`或`mousewheel`事件,并设置`event.preventDefault()`来防止滚动。这通常是通过JavaScript代码来实现的: ```javascript document.getElementById('your-refresh-contain
recommend-type

VB门诊管理系统设计与实现(附论文与源代码)

资源摘要信息:"VB门诊管理系统设计(论文+源代码)" 标题:"VB门诊管理系统设计(论文+源代码)" 从标题中,我们可以提取出两个主要知识点。首先,“VB门诊管理系统设计”指向了Visual Basic(VB)编程语言在开发门诊管理系统中的应用。其次,“设计”一词意味着该资源可能涉及到系统的设计方面,包括需求分析、系统架构设计、数据库设计以及用户界面设计。 描述:"计算机专业毕业设计之VB相关论文资源" 在描述中,提到了“计算机专业毕业设计”,这表明资源是一个专门为计算机专业学生设计的毕业设计项目,这个项目可能包含了论文写作与系统开发两个方面。描述中还强调了“VB相关”,这说明整个系统是用Visual Basic语言编写的,可能还涉及到了与VB相关的开发技术和概念。同时,也表明这是一份资源集合,包含论文和源代码两部分。 标签:"计算机网络 毕业设计 VB Java" 标签中列举的关键词为“计算机网络”、“毕业设计”、“VB”和“Java”。从中可以推断出,该毕业设计项目可能涉及到计算机网络的知识,因为门诊管理系统的数据传输可能会在局域网或互联网中进行。标签中提及“VB”,这进一步强调了系统的主要开发语言。同时,提到“Java”可能意味着在项目中有使用到Java语言,或者是将VB和Java进行某种形式的对比分析。 压缩包子文件的文件名称列表: VB门诊管理系统设计(论文+源代码) 文件名称列表直接对应了资源的标题,说明压缩包中包含了完整的毕业设计项目,不仅包括了毕业论文部分,也包括了实际的系统源代码。这部分信息表明用户可以期待获得一个完整的项目资料,可以用于学习和参考。 总体而言,这份资源可能包括以下几个方面的知识点: 1. Visual Basic编程语言及其在开发门诊管理系统中的应用。 2. 门诊管理系统的概念、功能和业务流程。 3. 系统分析与设计方法,包括需求分析、系统设计原则和数据库设计。 4. 计算机网络基础知识,以及网络在门诊管理系统中的应用。 5. 毕业设计的撰写方法,包括论文结构、格式和内容的撰写技巧。 6. 源代码开发和管理,包括代码编写、调试和维护的方法。 7. Java编程语言,可能是系统设计的对比分析或者是系统的辅助工具开发。 以上知识点应该会涵盖该资源的主体内容,可以作为学习或参考的宝贵资料。对于学习VB或者计算机专业的学生来说,这份资源将有助于加深对门诊管理系统设计的理解,并且能够提供实际的开发经验和案例学习。