怎么下载torchsummary 给出具体的步骤
时间: 2023-07-29 10:12:20 浏览: 74
你可以按照以下步骤下载并安装torchsummary:
1. 打开终端或命令行窗口,并输入以下命令来安装torchsummary:
```
pip install torchsummary
```
2. 如果你使用的是conda环境,则可以使用以下命令来安装:
```
conda install -c conda-forge torchsummary
```
3. 安装完成后,在Python脚本中导入torchsummary:
```python
from torchsummary import summary
```
4. 现在你可以使用summary函数来查看模型的结构和参数数量,例如:
```python
import torch.nn as nn
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# 创建模型实例
net = Net()
# 使用summary函数查看模型结构和参数数量
summary(net, (3, 32, 32))
```
输出结果如下:
```
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 6, 28, 28] 456
MaxPool2d-2 [-1, 6, 14, 14] 0
Conv2d-3 [-1, 16, 10, 10] 2,416
MaxPool2d-4 [-1, 16, 5, 5] 0
Linear-5 [-1, 120] 48,120
Linear-6 [-1, 84] 10,164
Linear-7 [-1, 10] 850
================================================================
Total params: 61,006
Trainable params: 61,006
Non-trainable params: 0
----------------------------------------------------------------
```
阅读全文