遗传算法旅行商matlab程序
时间: 2023-09-11 18:08:20 浏览: 84
旅行商问题的遗传算法MATLAB程序
以下是一个简单的遗传算法旅行商问题的 Matlab 程序:
```matlab
clc; clear all; close all;
% 遗传算法参数
npop = 100; % 种群大小
ngen = 500; % 迭代次数
pc = 0.8; % 交叉概率
pm = 0.05; % 变异概率
elitism = 0.05; % 精英比例
% 城市坐标
x = [0 3 6 2 5];
y = [0 1 5 2 6];
n = length(x); % 城市数量
% 距离矩阵
d = zeros(n);
for i = 1:n
for j = 1:n
d(i,j) = sqrt((x(i)-x(j))^2 + (y(i)-y(j))^2);
end
end
% 初始化种群
pop = zeros(npop,n+1);
for i = 1:npop
pop(i,1:n) = randperm(n);
pop(i,n+1) = pop(i,1);
end
% 迭代
for t = 1:ngen
% 计算适应度
fit = zeros(npop,1);
for i = 1:npop
for j = 1:n
fit(i) = fit(i) + d(pop(i,j),pop(i,j+1));
end
end
% 选择
[fit,idx] = sort(fit);
pop = pop(idx,:);
nelite = round(elitism*npop);
newpop = pop(1:nelite,:);
% 交叉
ncross = round(pc*npop);
for i = 1:ncross
p1 = randi(nelite);
p2 = randi(nelite);
while p2 == p1
p2 = randi(nelite);
end
child = zeros(1,n+1);
idx1 = randi(n);
idx2 = randi(n-idx1+1) + idx1;
child(idx1:idx2) = pop(p1,idx1:idx2);
j = 1;
for k = 1:n
if j < idx1 || j > idx2
while ismember(pop(p2,j),child)
j = j+1;
end
child(j) = pop(p2,j);
j = j+1;
end
end
child(n+1) = child(1);
newpop = [newpop; child];
end
% 变异
nmutate = round(pm*npop);
for i = 1:nmutate
p = randi(nelite);
child = pop(p,:);
idx1 = randi(n);
idx2 = randi(n);
tmp = child(idx1);
child(idx1) = child(idx2);
child(idx2) = tmp;
child(n+1) = child(1);
newpop = [newpop; child];
end
% 更新种群
pop = newpop;
% 绘图
clf;
plot(x,y,'ro','MarkerSize',10,'LineWidth',2);
hold on;
plot([x(pop(1,:)) x(pop(1,1))],[y(pop(1,:)) y(pop(1,1))],'b.-','LineWidth',2,'MarkerSize',20);
axis([-1 7 -1 7]);
axis square;
title(['Generation ' num2str(t)]);
drawnow;
end
```
程序中使用了一个简单的遗传算法来解决旅行商问题。程序首先定义了遗传算法参数,然后根据城市坐标计算距离矩阵。接着,程序初始化种群,并在每一代中进行选择、交叉和变异操作,更新种群。最后,程序绘制当前最优解的路径。
运行程序后,您可以看到遗传算法逐渐找到更优的路径,直到迭代次数达到设定的值。
阅读全文