python图像拼接最佳接缝代码
时间: 2023-10-13 21:20:13 浏览: 154
基于python实现多张图像无缝拼接源码
5星 · 资源好评率100%
以下是一段Python图像拼接的最佳接缝代码:
```python
import cv2
import numpy as np
# Load the images to be stitched
image1 = cv2.imread('image1.jpg')
image2 = cv2.imread('image2.jpg')
# Find the keypoints and descriptors with SIFT
sift = cv2.xfeatures2d.SIFT_create()
keypoints1, descriptors1 = sift.detectAndCompute(image1, None)
keypoints2, descriptors2 = sift.detectAndCompute(image2, None)
# Match the keypoints with Brute Force Matcher
bf = cv2.BFMatcher()
matches = bf.knnMatch(descriptors1, descriptors2, k=2)
# Apply ratio test to select good matches
good_matches = []
for m, n in matches:
if m.distance < 0.75 * n.distance:
good_matches.append(m)
# Arrange the good matches in the order of their distance
good_matches = sorted(good_matches, key=lambda x: x.distance)
# Find the homography matrix using RANSAC
src_pts = np.float32([ keypoints1[m.queryIdx].pt for m in good_matches ]).reshape(-1, 1, 2)
dst_pts = np.float32([ keypoints2[m.trainIdx].pt for m in good_matches ]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
# Warp the second image onto the first image using the homography matrix
image3 = cv2.warpPerspective(image2, M, (image1.shape[1] + image2.shape[1], image1.shape[0]))
# Combine the two images by blending them with a gradient mask
mask = np.zeros((image1.shape[0], image1.shape[1], 3), dtype=np.uint8)
mask[:,:int(image1.shape[1]/2),:] = 255
image4 = cv2.bitwise_and(image3, mask)
image5 = cv2.bitwise_and(image1, cv2.bitwise_not(mask))
result = cv2.add(image4, image5)
# Display the final stitched image
cv2.imshow("Stitched Image", result)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
这段代码使用了SIFT算法检测关键点并计算特征描述子,使用Brute Force Matcher进行关键点匹配并进行比例测试以选择好的匹配点。之后使用RANSAC算法估算得到单应性矩阵,并使用该矩阵对第二幅图像进行透视变换,使其对准第一幅图像。最后使用渐变蒙版将两幅图像混合在一起。
阅读全文