yolov5中的DetectionModel代码是什么
时间: 2023-07-15 17:16:00 浏览: 195
yolov5实现UART串口通信源代码,将YOLOv5检测到的目标检测框中心值(X,Y)通过UART串口发出
5星 · 资源好评率100%
DetectionModel是YOLOv5中的一个Python类,它位于yolov5/models/yolo.py文件中。
下面是DetectionModel类的代码:
```python
class DetectionModel(nn.Module):
def __init__(self, cfg):
super(DetectionModel, self).__init__()
self.model = attempt_load(cfg['weights'], map_location=torch.device('cpu')) # load FP32 model
self.model.eval()
self.model.float()
self.stride = torch.tensor(self.model.stride).float()
self.classes = self.model.module.names if hasattr(self.model, 'module') else self.model.names
self.autoshape = self.model.module.autoshape if hasattr(self.model, 'module') else self.model.autoshape
self.set_precision(cfg['precision'])
def forward(self, img, augment=False, visualize=False):
# Inference
pred = self.model(img, augment=augment, visualize=visualize)[0]
# Apply NMS
pred = non_max_suppression(pred, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes,
agnostic=self.agnostic_nms, max_det=self.max_det)
# Process detections
for i, det in enumerate(pred): # detections per image
if self.training:
# Rescale boxes from img_size to relative 0-1
det[:, :4] /= self.img_size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img.shape[2:]).round()
return pred
def set_precision(self, precision):
self.precision = precision
self.conf = 0.001 if precision == 'fp16' else 0.0001
self.iou = 0.65
self.agnostic_nms = False
self.max_det = 1000
if precision == 'int8':
self.model = torch.quantization.quantize_dynamic(
self.model, {torch.nn.Conv2d}, dtype=torch.qint8
)
self.model.qconfig = torch.quantization.get_default_qconfig('fbgemm')
self.model = torch.quantization.prepare(self.model)
self.model.eval()
```
该类接受一个配置字典作为参数,并从给定的权重加载YOLOv5模型。它还包含一个前向传递函数,该函数使用模型对图像进行推理并执行非最大抑制(NMS)以获取检测结果。此外,该类还包括设置模型精度(precision)的方法,以及一些与NMS相关的参数。
阅读全文