分治法实现矩阵的乘法,用c++来实现
时间: 2024-04-29 17:23:59 浏览: 124
以下是使用分治法实现矩阵乘法的C代码:
```
#include <stdio.h>
#define N 4
// 分治法实现矩阵乘法
void matrix_multiply(int a[][N], int b[][N], int c[][N], int n) {
if (n == 1) {
c[0][0] = a[0][0] * b[0][0];
} else {
int a11[N/2][N/2], a12[N/2][N/2], a21[N/2][N/2], a22[N/2][N/2];
int b11[N/2][N/2], b12[N/2][N/2], b21[N/2][N/2], b22[N/2][N/2];
int c11[N/2][N/2], c12[N/2][N/2], c21[N/2][N/2], c22[N/2][N/2];
int i, j;
// 划分矩阵
for (i = 0; i < n/2; i++) {
for (j = 0; j < n/2; j++) {
a11[i][j] = a[i][j];
a12[i][j] = a[i][j+n/2];
a21[i][j] = a[i+n/2][j];
a22[i][j] = a[i+n/2][j+n/2];
b11[i][j] = b[i][j];
b12[i][j] = b[i][j+n/2];
b21[i][j] = b[i+n/2][j];
b22[i][j] = b[i+n/2][j+n/2];
}
}
// 递归计算乘积矩阵
matrix_multiply(a11, b11, c11, n/2);
matrix_multiply(a12, b21, c12, n/2);
matrix_multiply(a11, b12, c21, n/2);
matrix_multiply(a12, b22, c22, n/2);
// 合并结果
for (i = 0; i < n/2; i++) {
for (j = 0; j < n/2; j++) {
c[i][j] = c11[i][j] + c12[i][j];
c[i][j+n/2] = c21[i][j] + c22[i][j];
c[i+n/2][j] = c11[i][j+n/2] + c12[i+n/2][j+n/2];
c[i+n/2][j+n/2] = c21[i+n/2][j] + c22[i+n/2][j+n/2];
}
}
}
}
int main() {
int a[N][N] = {
{1, 2, 3, 4},
{5, 6, 7, 8},
{9, 10, 11, 12},
{13, 14, 15, 16}
};
int b[N][N] = {
{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{0, 0, 0, 1}
};
int c[N][N];
int i, j;
matrix_multiply(a, b, c, N);
// 输出结果
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
printf("%d ", c[i][j]);
}
printf("\n");
}
return 0;
}
```
该程序首先定义了一个4x4的矩阵a和一个4x4的单位矩阵b。然后调用matrix_multiply函数来计算它们的乘积。最后输出结果。
matrix_multiply函数使用了递归的方式来实现矩阵乘法。当矩阵大小为1时,直接计算乘积。否则,将矩阵分成4个大小为n/2的子矩阵,并递归计算它们的乘积,最后合并结果。
注意,该程序中只实现了矩阵大小为2的幂次方的乘法,如果要计算其他大小的矩阵乘法,需要对代码进行修改。
阅读全文