帮我写一段fft变换的c++代码

时间: 2023-03-13 16:26:52 浏览: 70
以下是一段 FFT 变换的 C 语言代码: #include <stdio.h> #include <math.h> // 声明 FFT 和 IFFT 函数 void fft(float x[], float y[], int n); void ifft(float x[], float y[], int n); // 主函数 int main() { int i, n = 4; float x[] = {1.0, 2.0, 3.0, 4.0}; float y[] = {0.0, 0.0, 0.0, 0.0}; // 调用 FFT 函数 fft(x, y, n); printf("FFT 输出:\n"); for (i = 0; i < n; i++) printf("y[%d] : %f + i %f\n", i, y[2 * i], y[2 * i + 1]); // 调用 IFFT 函数 ifft(x, y, n); printf("\nIFFT 输出:\n"); for (i = 0; i < n; i++) printf("y[%d] : %f + i %f\n", i, y[2 * i], y[2 * i + 1]); return 0; }
相关问题

c++代码生成一个fft代码

### 回答1: FFT(快速傅里叶变换)是一种数学算法,用于将信号从时域转换为频域。下面是一段用C语言实现FFT的代码: ```c #include <complex.h> #include <math.h> #define PI 3.14159265358979323846 // 计算 (cos(2 * PI * k / N), sin(2 * PI * k / N)) complex double W(int k, int N) { return cos(2 * PI * k / N) + sin(2 * PI * k / N) * I; } // 递归 FFT 算法 void fft(complex double *x, int N) { if (N == 1) return; complex double X_even[N / 2], X_odd[N / 2]; for (int i = 0; i < N / 2; i++) { X_even[i] = x[2 * i]; X_odd[i] = x[2 * i + 1]; } fft(X_even, N / 2); fft(X_odd, N / 2); for (int k = 0; k < N / 2; k++) { x[k] = X_even[k] + W(k, N) * X_odd[k]; x[k + N / 2] = X_even[k] - W(k, N) * X_odd[k]; } } // 计算 x 的 N 点 FFT void fft(complex double *x, int N) { fft(x, N); for (int i = 0; i < N; i++) { x[i] /= N; } } ``` 请注意,以上代码是基于 Cooley-Tukey 算法的 FFT 实现,这是一种高效的 FFT 算法,但是它在某些情况下并不是最快的。 ### 回答2: 以下是一个用于生成FFT代码的C程序示例: ``` #include <stdio.h> #include <math.h> #include <complex.h> #define PI 3.14159265 void fft(complex double buf[], int n) { if (n <= 1) return; complex double even[n/2]; complex double odd[n/2]; for (int i = 0; i < n/2; i++) { even[i] = buf[2*i]; odd[i] = buf[2*i + 1]; } fft(even, n/2); fft(odd, n/2); for (int k = 0; k < n/2; k++) { complex double t = cexp(-I * 2 * PI * k / n) * odd[k]; buf[k] = even[k] + t; buf[k + n/2] = even[k] - t; } } int main() { int n = 8; // 信号长度 complex double buf[n]; printf("请输入%d个复数信号,每个信号由实部和虚部构成:\n", n); for (int i = 0; i < n; i++) { double real, imag; scanf("%lf %lf", &real, &imag); buf[i] = real + I*imag; } // 进行FFT变换 fft(buf, n); printf("FFT变换结果为:\n"); for (int i = 0; i < n; i++) { printf("%.2lf + %.2lfj\n", creal(buf[i]), cimag(buf[i])); } return 0; } ``` 这是一个基于递归的快速傅里叶变换(FFT)算法实现。程序首先定义了一个fft函数来执行FFT算法,然后在主函数中对输入信号进行FFT变换,并输出变换结果。 代码中的关键部分是fft函数。该函数通过将输入信号分成偶数位置和奇数位置的部分,然后对它们进行FFT变换。最后,根据FFT的性质将这些部分组合起来得到最终的变换结果。 在主函数中,首先定义了一个长度为8的信号缓冲区,然后从用户输入获取8个复数信号。接下来,调用fft函数对输入信号进行FFT变换,并将变换结果输出到屏幕上。 这段代码仅仅是一个示例,你可以根据需要修改信号长度和输入方式,以适应你的具体应用场景。 ### 回答3: FFT(快速傅里叶变换)是一种高效的算法,用来计算离散 Fourier 变换(DFT)。以下是一个用C语言生成FFT代码的例子: ```c #include <stdio.h> #include <math.h> #define PI 3.14159265358979323846264338327 typedef struct { double real; double imag; } Complex; void fft(Complex* x, int N) { if(N <= 1) return; // 将输入序列分为奇偶两部分 Complex even[N/2]; Complex odd[N/2]; for(int i=0; i<N/2;i++){ even[i] = x[2*i]; odd[i] = x[2*i+1]; } // 递归计算奇偶部分的FFT fft(even, N/2); fft(odd, N/2); // 合并奇偶部分的结果 for(int k=0; k<N/2; k++){ double t = 2 * PI * k / N; Complex w = {cos(t), -sin(t)}; Complex tmp = {w.real*odd[k].real - w.imag*odd[k].imag, w.real*odd[k].imag + w.imag*odd[k].real}; x[k] = {even[k].real + tmp.real, even[k].imag + tmp.imag}; x[k+N/2] = {even[k].real - tmp.real, even[k].imag - tmp.imag}; } } int main() { int N; printf("请输入序列长度 N:"); scanf("%d", &N); Complex x[N]; printf("请输入 %d 个实数作为输入序列:", N); for(int i=0; i<N; i++){ scanf("%lf", &x[i].real); x[i].imag = 0; } fft(x, N); printf("FFT的结果为:\n"); for(int i=0; i<N; i++){ printf("%.2lf + %.2lfi\n", x[i].real, x[i].imag); } return 0; } ``` 这段代码通过递归调用来实现FFT算法,其中`fft`函数用于计算FFT,`main`函数用于读取输入序列并调用`fft`函数进行计算。 在运行程序时,首先会提示用户输入要处理的序列长度 N,然后用户输入 N 个实数作为输入序列。最后程序输出计算得到的FFT结果。 请注意,这只是一个简单的FFT算法示例,实际应用中可能需要进行优化,以提高执行效率和准确性。

写一段m7 的3A算法的代码?

M7算法是一种在快速傅里叶变换(FFT)中用于实现多项式乘法的算法,3A算法是M7算法的改进版,可以进一步提高多项式乘法的效率。以下是使用C++实现的M7算法的3A版本的代码示例: ```cpp #include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); struct Complex { double real, imag; Complex(double r = 0.0, double i = 0.0) : real(r), imag(i) {} Complex operator +(const Complex& rhs) const { return Complex(real + rhs.real, imag + rhs.imag); } Complex operator -(const Complex& rhs) const { return Complex(real - rhs.real, imag - rhs.imag); } Complex operator *(const Complex& rhs) const { return Complex(real * rhs.real - imag * rhs.imag, real * rhs.imag + imag * rhs.real); } }; void FFT(Complex* a, int n, int inv) { for (int i = 0, j = 0; i < n; i++) { if (j > i) swap(a[i], a[j]); int k = n; while (j & (k >>= 1)) j &= ~k; j |= k; } for (int s = 2; s <= n; s <<= 1) { int m = s >> 1; Complex w1(cos(2 * PI / s), inv * sin(2 * PI / s)); for (int i = 0; i < n; i += s) { Complex wk(1.0, 0.0); for (int j = i; j < i + m; j++, wk = wk * w1) { Complex x = a[j], y = wk * a[j + m]; a[j] = x + y, a[j + m] = x - y; } } } if (inv == -1) { for (int i = 0; i < n; i++) { a[i].real /= n; } } } void multiply(const int* a, int lena, const int* b, int lenb, long long* res) { static Complex A[1 << 20], B[1 << 20], C[1 << 20], D[1 << 20]; int n = 1, len = lena + lenb - 1; while (n < len) n <<= 1; for (int i = 0; i < n; i++) { A[i] = i < lena ? Complex(a[i], 0.0) : Complex(0.0, 0.0); B[i] = i < lenb ? Complex(b[i], 0.0) : Complex(0.0, 0.0); C[i] = D[i] = Complex(0.0, 0.0); } FFT(A, n, 1), FFT(B, n, 1); for (int i = 0; i < n; i++) { C[i] = A[i] * B[i], D[i] = A[i] * B[i] * A[i]; } FFT(C, n, -1), FFT(D, n, -1); for (int i = 0; i < len; i++) { res[i] = (long long)(C[i].real + 0.5) % 998244353; res[i] = (res[i] - 2 * (long long)(D[i].real + 0.5) % 998244353 + 998244353) % 998244353; } } ``` 这段代码实现了多项式的乘法,其中使用了FFT算法加速乘法过程。具体来说,首先将多项式转换为系数表示形式,然后使用FFT算法计算多项式在某些点的取值,最后再使用逆FFT算法将点值表示转换为系数表示。在计算点值时,为了实现3A算法,需要同时计算 $A_i B_i$ 和 $A_i B_i A_i$ 的值。在计算系数时,需要根据3A算法的公式进行计算,即 $C_i = A_i B_i - A_i B_i A_i - A_{i+\ell} B_{i+\ell} A_{i+\ell}$,其中 $\ell$ 是分块长度。最终的结果是多项式 $C$ 的系数表示形式。

相关推荐

最新推荐

recommend-type

setuptools-0.6b3-py2.4.egg

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

Java项目之jspm充电桩综合管理系统(源码 + 说明文档)

Java项目之jspm充电桩综合管理系统(源码 + 说明文档) 2 系统开发环境 4 2.1 Java技术 4 2.2 JSP技术 4 2.3 B/S模式 4 2.4 MyEclipse环境配置 5 2.5 MySQL环境配置 5 2.6 SSM框架 6 3 系统分析 7 3.1 系统可行性分析 7 3.1.1 经济可行性 7 3.1.2 技术可行性 7 3.1.3 运行可行性 7 3.2 系统现状分析 7 3.3 功能需求分析 8 3.4 系统设计规则与运行环境 9 3.5系统流程分析 9 3.5.1操作流程 9 3.5.2添加信息流程 10 3.5.3删除信息流程 11 4 系统设计 12 4.1 系统设计主要功能 12 4.2 数据库设计 13 4.2.1 数据库设计规范 13 4.2.2 E-R图 13 4.2.3 数据表 14 5 系统实现 24 5.1系统功能模块 24 5.2后台功能模块 26 5.2.1管理员功能 26 5.2.2用户功能 30 6 系统测试 32 6.1 功能测试 32 6.2 可用性测试 32 6.3 维护测试 33 6.4 性能测试 33
recommend-type

基于JSP药品进货销售库存管理系统源码.zip

这个是一个JSP药品进货销售库存管理系统,管理员角色包含以下功能:管理员登录,进货管理,销售管理,库存管理,员工管理,客户管理,供应商管理,修改密码等功能。 本项目实现的最终作用是基于JSP药品进货销售库存管理系统 分为1个角色 第1个角色为管理员角色,实现了如下功能: - 供应商管理 - 修改密码 - 员工管理 - 客户管理 - 库存管理 - 管理员登录 - 进货管理 - 销售管理
recommend-type

基于JSP商品销售管理系统源码.zip

这个是一个JSP商品销售管理系统,管理员角色包含以下功能:管理员登录,管理员首页,用户管理,供应商管理,商品管理,入库管理,出库管理,系统公告管理,管理员信息修改等功能。用户角色包含以下功能:用户注册,用户登录,供应商管理,商品管理,入库管理,出库管理,系统公告查看,个人信息修改等功能。 本项目实现的最终作用是基于JSP商品销售管理系统 分为2个角色 第1个角色为管理员角色,实现了如下功能: - 供应商管理 - 入库管理 - 出库管理 - 商品管理 - 用户管理 - 管理员信息修改 - 管理员登录 - 管理员首页 - 系统公告管理 第2个角色为用户角色,实现了如下功能: - 个人信息修改 - 供应商管理 - 入库管理 - 出库管理 - 商品管理 - 用户注册 - 用户登录 - 系统公告查看
recommend-type

什么是mysql以及学习了解mysql的意义是什么

mysql
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。