pytorch搭建UNet
时间: 2023-09-27 14:04:51 浏览: 170
基于pytorch搭建的unet模型进行训练
要使用PyTorch搭建UNet,可以按照以下步骤进行:
1. 导入必要的模块:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
```
2. 定义UNet的核心模块:
```python
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
```
3. 定义UNet的编码器:
```python
class UNet(nn.Module):
def __init__(self, in_channels, out_channels):
super(UNet, self).__init__()
self.down1 = DoubleConv(in_channels, 64)
self.down2 = DoubleConv(64, 128)
self.down3 = DoubleConv(128, 256)
self.down4 = DoubleConv(256, 512)
self.up1 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
self.up2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.up3 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.up4 = nn.ConvTranspose2d(64, out_channels, kernel_size=2, stride=2)
def forward(self, x):
x1 = self.down1(x)
x2 = self.down2(F.max_pool2d(x1, 2))
x3 = self.down3(F.max_pool2d(x2, 2))
x4 = self.down4(F.max_pool2d(x3, 2))
x = self.up1(x4)
x = self.up2(torch.cat([x, x3], dim=1))
x = self.up3(torch.cat([x, x2], dim=1))
x = self.up4(torch.cat([x, x1], dim=1))
return x
```
4. 创建UNet实例并定义输入输出通道数:
```python
model = UNet(in_channels=3, out_channels=1)
```
这是一个基本的UNet模型,你可以根据自己的需求进行修改和扩展。记得在训练之前,要根据你的任务定义损失函数和优化器。
阅读全文