给出一段Python代码,并调用pytorch,实现以下功能,将一个Excel表格中的5列数据处理成多变量lstm预测模型的输入类型
时间: 2023-04-05 09:00:31 浏览: 58
以下是一段Python代码,使用pytorch实现将Excel表格中的5列数据处理成多变量lstm预测模型的输入类型:
```python
import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader
# 读取Excel表格数据
data = pd.read_excel('data.xlsx')
# 将数据转换为PyTorch张量
data_tensor = torch.tensor(data.values, dtype=torch.float32)
# 定义数据集类
class MyDataset(Dataset):
def __init__(self, data_tensor):
self.data_tensor = data_tensor
def __len__(self):
return len(self.data_tensor) - 1
def __getitem__(self, idx):
x = self.data_tensor[idx:idx+5]
y = self.data_tensor[idx+5][-1]
return x, y
# 定义数据加载器
batch_size = 32
data_loader = DataLoader(MyDataset(data_tensor), batch_size=batch_size, shuffle=True)
# 定义多变量LSTM模型
class MyModel(torch.nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.lstm = torch.nn.LSTM(input_size=5, hidden_size=64, num_layers=2, batch_first=True)
self.fc = torch.nn.Linear(64, 1)
def forward(self, x):
out, _ = self.lstm(x)
out = self.fc(out[:, -1, :])
return out
# 定义训练函数
def train(model, data_loader, optimizer, criterion, num_epochs):
for epoch in range(num_epochs):
for x, y in data_loader:
optimizer.zero_grad()
out = model(x)
loss = criterion(out, y.unsqueeze(1))
loss.backward()
optimizer.step()
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
# 训练模型
model = MyModel()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = torch.nn.MSELoss()
num_epochs = 100
train(model, data_loader, optimizer, criterion, num_epochs)
```
这段代码将Excel表格中的5列数据转换为PyTorch张量,并定义了一个数据集类和数据加载器,用于将数据输入到多变量LSTM模型中进行训练。训练过程中使用均方误差损失函数和Adam优化器进行优化。
相关推荐

















