给出一段代码,用pytorch实现多维lstm预测价格,并打印输入形状以及输出形状还有标签形状
时间: 2023-04-07 19:00:58 浏览: 254
抱歉,我可以回答这个问题。以下是一个用 PyTorch 实现多维 LSTM 预测价格的代码示例:
```python
import torch
import torch.nn as nn
# 定义 LSTM 模型
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(LSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
# 定义输入数据和标签
input_data = torch.randn(10, 5, 3) # 输入形状为 (batch_size, seq_len, input_size)
labels = torch.randn(10, 1) # 标签形状为 (batch_size, output_size)
# 定义模型参数
input_size = 3
hidden_size = 10
num_layers = 2
output_size = 1
# 初始化模型并进行训练
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = LSTM(input_size, hidden_size, num_layers, output_size).to(device)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
for epoch in range(100):
optimizer.zero_grad()
outputs = model(input_data)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 打印输出形状
print(outputs.shape) # 输出形状为 (batch_size, output_size)
# 打印标签形状
print(labels.shape) # 标签形状为 (batch_size, output_size)
```
在这个示例中,我们定义了一个多维 LSTM 模型,用于预测价格。我们使用 PyTorch 内置的 LSTM 层和线性层来构建模型,并使用均方误差损失函数和 Adam 优化器进行训练。最后,我们打印了输出形状和标签形状,以检查它们是否正确。
阅读全文