使用stm32最小系统板实现呼吸灯

时间: 2023-09-27 11:11:19 浏览: 99
RAR

stm32最小系统板例程,实现LED延时闪烁,keil工程文件

呼吸灯是一种常见的LED灯效,其亮度会逐渐增强或减弱,仿佛在呼吸一样,给人一种柔和的感觉。使用STM32最小系统板可以很方便地实现呼吸灯效果。 首先,我们需要连接一个LED到STM32的GPIO引脚上。假设我们连接的是PA5引脚,代码如下: ```c /* 定义GPIO引脚 */ #define LED_PIN GPIO_PIN_5 #define LED_PORT GPIOA /* 使能GPIO时钟 */ __HAL_RCC_GPIOA_CLK_ENABLE(); /* 配置GPIO引脚为推挽输出模式 */ GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = LED_PIN; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LED_PORT, &GPIO_InitStruct); ``` 接下来,我们使用定时器来控制LED的亮度。以TIM2为例,代码如下: ```c /* 定义TIM2的预分频器和周期值 */ #define PWM_PRESCALER 999 #define PWM_PERIOD 999 /* 使能TIM2时钟 */ __HAL_RCC_TIM2_CLK_ENABLE(); /* 配置TIM2为PWM模式 */ TIM_HandleTypeDef htim2 = {0}; htim2.Instance = TIM2; htim2.Init.Prescaler = PWM_PRESCALER; htim2.Init.Period = PWM_PERIOD; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; HAL_TIM_PWM_Init(&htim2); /* 配置TIM2通道1为PWM输出 */ TIM_OC_InitTypeDef sConfigOC = {0}; sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1); /* 启动TIM2 */ HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1); ``` 现在,我们可以在主循环中不断调整TIM2的占空比来实现呼吸灯效果。代码如下: ```c while (1) { for (int i = 0; i <= PWM_PERIOD; i++) { __HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_1, i); HAL_Delay(10); } for (int i = PWM_PERIOD; i >= 0; i--) { __HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_1, i); HAL_Delay(10); } } ``` 在上述代码中,我们使用HAL_Delay函数来停顿一段时间,以控制呼吸灯的速度。可以根据需要调整停顿时间来改变呼吸灯的速度。 完整代码如下: ```c #include "main.h" /* 定义GPIO引脚 */ #define LED_PIN GPIO_PIN_5 #define LED_PORT GPIOA /* 定义TIM2的预分频器和周期值 */ #define PWM_PRESCALER 999 #define PWM_PERIOD 999 /* 使能GPIO和TIM2时钟 */ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_TIM2_Init(void); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_TIM2_Init(); while (1) { for (int i = 0; i <= PWM_PERIOD; i++) { __HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_1, i); HAL_Delay(10); } for (int i = PWM_PERIOD; i >= 0; i--) { __HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_1, i); HAL_Delay(10); } } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /* Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /* Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } static void MX_GPIO_Init(void) { /* 使能GPIO时钟 */ __HAL_RCC_GPIOA_CLK_ENABLE(); /* 配置GPIO引脚为推挽输出模式 */ GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = LED_PIN; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LED_PORT, &GPIO_InitStruct); } static void MX_TIM2_Init(void) { /* 使能TIM2时钟 */ __HAL_RCC_TIM2_CLK_ENABLE(); /* 配置TIM2为PWM模式 */ TIM_HandleTypeDef htim2 = {0}; htim2.Instance = TIM2; htim2.Init.Prescaler = PWM_PRESCALER; htim2.Init.Period = PWM_PERIOD; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; HAL_TIM_PWM_Init(&htim2); /* 配置TIM2通道1为PWM输出 */ TIM_OC_InitTypeDef sConfigOC = {0}; sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1); /* 启动TIM2 */ HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1); } ```
阅读全文

相关推荐

最新推荐

recommend-type

嵌入式实验报告 stm32f103 跑马灯实验 GPIO口操作

实验的目标是让学生掌握 STM32 的基本编程技巧,特别是GPIO的操作,以实现LED流水灯的效果。下面将详细讨论相关知识点。 1. **STM32F103**:STM32F103是STMicroelectronics生产的一款基于ARM Cortex-M3内核的微控制...
recommend-type

基于STM32单片机流水灯仿真与程序设计

STM32单片机流水灯仿真与程序设计是嵌入式系统学习中常见的实践项目,它可以帮助初学者理解和掌握单片机控制硬件的基本方法。在这个项目中,我们使用了STM32F103系列单片机,这是一种广泛应用的32位微控制器,基于...
recommend-type

STM32H743核心板原理图.pdf

STM32H743核心板原理图.pdf 本资源为STM32H743IIT6微控制器开发板的原理图,板载NANDFLASH、QSPIFLASH、TF、RGB接口等多种外设。下面我们将对原理图中的关键知识点进行详细的解释。 1. STM32H743IIT6微控制器 STM...
recommend-type

STM32F103单片机系统时钟部分归纳

STM32F103单片机的系统时钟部分主要涉及到时钟源的选择和配置,这些时钟源对单片机的性能和功耗管理至关重要。STM32F103采用的是ARM Cortex-M3架构,其时钟控制系统称为RCC(Reset and Clock Control),它管理着...
recommend-type

STM32实现智能小车电磁循迹

【STM32实现智能小车电磁循迹】项目旨在利用STM32单片机和电磁感应原理,构建一个能够沿着预设线路自主行驶的智能小车。该项目涉及到多个技术环节,包括赛道检测原理、电感线圈设计、信号处理电路、传感模块功能实现...
recommend-type

Python中快速友好的MessagePack序列化库msgspec

资源摘要信息:"msgspec是一个针对Python语言的高效且用户友好的MessagePack序列化库。MessagePack是一种快速的二进制序列化格式,它旨在将结构化数据序列化成二进制格式,这样可以比JSON等文本格式更快且更小。msgspec库充分利用了Python的类型提示(type hints),它支持直接从Python类定义中生成序列化和反序列化的模式。对于开发者来说,这意味着使用msgspec时,可以减少手动编码序列化逻辑的工作量,同时保持代码的清晰和易于维护。 msgspec支持Python 3.8及以上版本,能够处理Python原生类型(如int、float、str和bool)以及更复杂的数据结构,如字典、列表、元组和用户定义的类。它还能处理可选字段和默认值,这在很多场景中都非常有用,尤其是当消息格式可能会随着时间发生变化时。 在msgspec中,开发者可以通过定义类来描述数据结构,并通过类继承自`msgspec.Struct`来实现。这样,类的属性就可以直接映射到消息的字段。在序列化时,对象会被转换为MessagePack格式的字节序列;在反序列化时,字节序列可以被转换回原始对象。除了基本的序列化和反序列化,msgspec还支持运行时消息验证,即可以在反序列化时检查消息是否符合预定义的模式。 msgspec的另一个重要特性是它能够处理空集合。例如,上面的例子中`User`类有一个名为`groups`的属性,它的默认值是一个空列表。这种能力意味着开发者不需要为集合中的每个字段编写额外的逻辑,以处理集合为空的情况。 msgspec的使用非常简单直观。例如,创建一个`User`对象并序列化它的代码片段显示了如何定义一个用户类,实例化该类,并将实例序列化为MessagePack格式。这种简洁性是msgspec库的一个主要优势,它减少了代码的复杂性,同时提供了高性能的序列化能力。 msgspec的设计哲学强调了性能和易用性的平衡。它利用了Python的类型提示来简化模式定义和验证的复杂性,同时提供了优化的内部实现来确保快速的序列化和反序列化过程。这种设计使得msgspec非常适合于那些需要高效、类型安全的消息处理的场景,比如网络通信、数据存储以及服务之间的轻量级消息传递。 总的来说,msgspec为Python开发者提供了一个强大的工具集,用于处理高性能的序列化和反序列化任务,特别是当涉及到复杂的对象和结构时。通过利用类型提示和用户定义的模式,msgspec能够简化代码并提高开发效率,同时通过运行时验证确保了数据的正确性。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32 HAL库函数手册精读:最佳实践与案例分析

![STM32 HAL库函数手册精读:最佳实践与案例分析](https://khuenguyencreator.com/wp-content/uploads/2020/07/bai11.jpg) 参考资源链接:[STM32CubeMX与STM32HAL库开发者指南](https://wenku.csdn.net/doc/6401ab9dcce7214c316e8df8?spm=1055.2635.3001.10343) # 1. STM32与HAL库概述 ## 1.1 STM32与HAL库的初识 STM32是一系列广泛使用的ARM Cortex-M微控制器,以其高性能、低功耗、丰富的外设接
recommend-type

如何利用FineReport提供的预览模式来优化报表设计,并确保最终用户获得最佳的交互体验?

针对FineReport预览模式的应用,这本《2020 FCRA报表工程师考试题库与答案详解》详细解读了不同预览模式的使用方法和场景,对于优化报表设计尤为关键。首先,设计报表时,建议利用FineReport的分页预览模式来检查报表的布局和排版是否准确,因为分页预览可以模拟报表在打印时的页面效果。其次,通过填报预览模式,可以帮助开发者验证用户交互和数据收集的准确性,这对于填报类型报表尤为重要。数据分析预览模式则适合于数据可视化报表,可以在这个模式下调整数据展示效果和交互设计,确保数据的易读性和分析的准确性。表单预览模式则更多关注于表单的逻辑和用户体验,可以用于检查表单的流程是否合理,以及数据录入
recommend-type

大学生社团管理系统设计与实现

资源摘要信息:"基于ssm+vue的大学生社团管理系统.zip" 该系统是基于Java语言开发的,使用了ssm框架和vue前端框架,主要面向大学生社团进行管理和运营,具备了丰富的功能和良好的用户体验。 首先,ssm框架是Spring、SpringMVC和MyBatis三个框架的整合,其中Spring是一个全面的企业级框架,可以处理企业的业务逻辑,实现对象的依赖注入和事务管理。SpringMVC是基于Servlet API的MVC框架,可以分离视图和模型,简化Web开发。MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。 SpringBoot是一种全新的构建和部署应用程序的方式,通过使用SpringBoot,可以简化Spring应用的初始搭建以及开发过程。它使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。 Vue.js是一个用于创建用户界面的渐进式JavaScript框架,它的核心库只关注视图层,易于上手,同时它的生态系统也十分丰富,提供了大量的工具和库。 系统主要功能包括社团信息管理、社团活动管理、社团成员管理、社团财务管理等。社团信息管理可以查看和编辑社团的基本信息,如社团名称、社团简介等;社团活动管理可以查看和编辑社团的活动信息,如活动时间、活动地点等;社团成员管理可以查看和编辑社团成员的信息,如成员姓名、成员角色等;社团财务管理可以查看和编辑社团的财务信息,如收入、支出等。 此外,该系统还可以通过微信小程序进行访问,微信小程序是一种不需要下载安装即可使用的应用,它实现了应用“触手可及”的梦想,用户扫一扫或者搜一下即可打开应用。同时,它也实现了应用“用完即走”的理念,用户不用关心是否安装太多应用的问题。应用将无处不在,随时可用,但又无需安装卸载。 总的来说,基于ssm+vue的大学生社团管理系统是一款功能丰富、操作简便、使用方便的社团管理工具,非常适合大学生社团的日常管理和运营。