基于卷积神经网络的图像识别外文翻译

时间: 2023-09-24 18:07:36 浏览: 20
Title: Image Recognition Based on Convolutional Neural Networks Abstract: Image recognition has been a popular research topic in the field of computer vision. With the development of deep learning, convolutional neural networks (CNNs) have shown excellent performance in this area. In this paper, we introduce the basic structure and principles of CNNs, and then discuss the application of CNNs in image recognition. Specifically, we focus on the training process of CNNs, including data preprocessing, network initialization, and optimization algorithms. We also compare different CNN architectures and evaluate their performance on benchmark datasets. Finally, we summarize the advantages and limitations of CNNs in image recognition, and suggest some potential directions for future research. Keywords: Convolutional neural networks, image recognition, deep learning, data preprocessing, network initialization, optimization algorithms 1. Introduction Image recognition, also known as image classification, is a fundamental task in computer vision. The goal is to assign a label to an input image from a predefined set of categories. Image recognition has a wide range of applications, such as object detection, face recognition, and scene understanding. Traditional image recognition methods usually rely on handcrafted features and machine learning algorithms, which require domain expertise and extensive manual effort. In recent years, deep learning has emerged as a powerful tool for image recognition, and convolutional neural networks (CNNs) have become the state-of-the-art approach in this area. CNNs are a class of neural networks that are specifically designed for image analysis. They employ convolutional layers to extract local features from the input image, and use pooling layers to reduce the spatial dimensionality. The output of the convolutional layers is then fed into fully connected layers, which perform high-level reasoning and produce the final classification result. CNNs have several advantages over traditional methods. First, they can automatically learn hierarchical representations of the input data, without the need for manual feature engineering. Second, they are able to capture spatial correlations and translation invariance, which are important characteristics of natural images. Third, they can handle large-scale datasets and are computationally efficient. In this paper, we provide a comprehensive overview of CNNs for image recognition. We begin by introducing the basic structure and principles of CNNs, including convolutional layers, pooling layers, and fully connected layers. We then discuss the training process of CNNs, which includes data preprocessing, network initialization, and optimization algorithms. We also compare different CNN architectures, such as LeNet, AlexNet, VGG, GoogLeNet, and ResNet, and evaluate their performance on benchmark datasets, such as MNIST, CIFAR-10, and ImageNet. Finally, we summarize the advantages and limitations of CNNs in image recognition, and suggest some potential directions for future research. 2. Convolutional Neural Networks 2.1 Basic Structure and Principles CNNs are composed of multiple layers, including convolutional layers, pooling layers, and fully connected layers. The input to a CNN is an image, represented as a matrix of pixel values. The output is a predicted label, which is one of the predefined categories. Convolutional layers are the core components of a CNN. They consist of a set of learnable filters, each of which is a small matrix of weights. The filters are convolved with the input image, producing a feature map that highlights the presence of certain patterns or structures. The convolution operation is defined as follows: \begin{equation} y_{i,j}=\sum_{m=1}^{M}\sum_{n=1}^{N}w_{m,n}x_{i+m-1,j+n-1}+b \end{equation} where y_{i,j} is the output at position (i,j) of the feature map, x_{i+m-1,j+n-1} is the input at position (i+m-1,j+n-1), w_{m,n} is the weight at position (m,n) of the filter, b is a bias term, and M and N are the dimensions of the filter. Pooling layers are used to reduce the spatial dimensionality of the feature map. They operate on small regions of the map, such as 2x2 or 3x3 patches, and perform a simple operation, such as taking the maximum or average value. Pooling helps to improve the robustness of the network to small translations and distortions in the input image. Fully connected layers are used to perform high-level reasoning and produce the final classification result. They take the output of the convolutional and pooling layers, flatten it into a vector, and pass it through a set of nonlinear activation functions. The output of the last fully connected layer is a probability distribution over the predefined categories, which is obtained by applying the softmax function: \begin{equation} p_{i}=\frac{e^{z_{i}}}{\sum_{j=1}^{K}e^{z_{j}}} \end{equation} where p_{i} is the predicted probability of category i, z_{i} is the unnormalized score of category i, and K is the total number of categories. 2.2 Training Process The training process of a CNN involves several steps, including data preprocessing, network initialization, and optimization algorithms. Data preprocessing is a crucial step in CNN training, as it can significantly affect the performance of the network. Common preprocessing techniques include normalization, data augmentation, and whitening. Normalization scales the pixel values to have zero mean and unit variance, which helps to stabilize the training process and improve convergence. Data augmentation generates new training examples by applying random transformations to the original images, such as rotations, translations, and flips. This helps to increase the size and diversity of the training set, and reduces overfitting. Whitening removes the linear dependencies between the pixel values, which decorrelates the input features and improves the discriminative power of the network. Network initialization is another important aspect of CNN training, as it can affect the convergence and generalization of the network. There are several methods for initializing the weights, such as random initialization, Gaussian initialization, and Xavier initialization. Random initialization initializes the weights with small random values, which can lead to slow convergence and poor performance. Gaussian initialization initializes the weights with random values drawn from a Gaussian distribution, which can improve convergence and performance. Xavier initialization initializes the weights with values that are scaled according to the number of input and output neurons, which helps to balance the variance of the activations and gradients. Optimization algorithms are used to update the weights of the network during training, in order to minimize the objective function. Common optimization algorithms include stochastic gradient descent (SGD), Adam, and Adagrad. SGD updates the weights using the gradient of the objective function with respect to the weights, multiplied by a learning rate. Adam adapts the learning rate dynamically based on the first and second moments of the gradient. Adagrad adapts the learning rate for each weight based on its past gradients, which helps to converge faster for sparse data. 3. CNN Architectures There have been many CNN architectures proposed in the literature, each with its own strengths and weaknesses. In this section, we briefly introduce some of the most popular architectures, and evaluate their performance on benchmark datasets. LeNet is one of the earliest CNN architectures, proposed by Yann LeCun in 1998 for handwritten digit recognition. It consists of two convolutional layers, followed by two fully connected layers, and uses the sigmoid activation function. LeNet achieved state-of-the-art performance on the MNIST dataset, with an error rate of 0.8%. AlexNet is a landmark CNN architecture, proposed by Alex Krizhevsky et al. in 2012 for the ImageNet challenge. It consists of five convolutional layers, followed by three fully connected layers, and uses the rectified linear unit (ReLU) activation function. AlexNet achieved a top-5 error rate of 15.3% on the ImageNet dataset, which was a significant improvement over the previous state-of-the-art method. VGG is another CNN architecture, proposed by Karen Simonyan and Andrew Zisserman in 2014. It consists of up to 19 convolutional layers, followed by two fully connected layers, and uses the ReLU activation function. VGG achieved a top-5 error rate of 7.3% on the ImageNet dataset, which was the best performance at the time. GoogLeNet is a CNN architecture, proposed by Christian Szegedy et al. in 2014. It consists of 22 layers, including multiple inception modules, which are composed of parallel convolutional and pooling layers at different scales. GoogLeNet achieved a top-5 error rate of 6.7% on the ImageNet dataset, with much fewer parameters than VGG. ResNet is a CNN architecture, proposed by Kaiming He et al. in 2015. It consists of residual blocks, which allow the network to learn residual connections between layers, and avoid the vanishing gradient problem. ResNet achieved a top-5 error rate of 3.57% on the ImageNet dataset, which was the best performance at the time. 4. Conclusion and Future Work In this paper, we provided a comprehensive overview of CNNs for image recognition, including the basic structure and principles, the training process, and the comparison of different architectures on benchmark datasets. CNNs have shown remarkable performance in image recognition, and have become the state-of-the-art approach in this area. However, there are still some challenges that need to be addressed, such as improving the robustness and interpretability of the network, handling noisy and incomplete data, and scaling up the training process to larger datasets and more complex tasks. In the future, we expect to see more research on these topics, and more applications of CNNs in various domains.

相关推荐

以下是一篇计算机相关的英文期刊的翻译: 标题:深度学习在图像识别中的应用 摘要:深度学习是一种基于神经网络的机器学习技术,具有强大的特征提取和分类能力,已经在图像识别等领域取得了巨大的成功。本文介绍了深度学习在图像识别中的应用,包括卷积神经网络、循环神经网络等常见的模型及其应用场景。同时,我们还讨论了深度学习在图像识别中的一些挑战和未来的发展方向。 正文:深度学习是一种基于神经网络的机器学习技术,它可以通过多层次的非线性变换来提取数据的高级特征,并进行分类、识别等任务。在图像识别领域,深度学习已经成为了一种主流的技术,可以实现高效、准确的图像识别。 卷积神经网络是深度学习在图像识别中最常用的模型之一。它可以通过卷积层、池化层等操作来提取图像的特征,并通过全连接层进行分类。卷积神经网络在图像识别、目标检测等领域取得了很好的效果,如AlexNet、VGG等模型在ImageNet图像识别竞赛中取得了很好的成绩。 循环神经网络是一种可以处理序列数据的神经网络模型,它可以通过记忆单元来记忆历史信息,并在当前状态下进行预测和分类。在图像识别中,循环神经网络可以用于处理图像序列、视频等数据,如LSTM、GRU等模型在视频识别、行为识别等领域取得了很好的效果。 除了卷积神经网络和循环神经网络,深度学习还有很多其他的模型和技术可以用于图像识别,如残差网络、注意力机制等。同时,深度学习在图像识别中还存在一些挑战,如数据量不足、过拟合等问题,这些问题需要进一步研究和解决。 总之,深度学习在图像识别中有着广泛的应用前景,未来还有很多研究和发展的空间。
以下是一篇关于CNN人脸识别的外文文献及其译文: 原文:Face Recognition using Convolutional Neural Networks 作者:Liang Lin, Xiaohui Shen, Lianwen Jin, Ran He, Zhe Wang, Jianchao Yang 出处:IEEE Transactions on Information Forensics and Security, vol. 9, no. 7, pp. 1087-1097, July 2014. 摘要:人脸识别一直是计算机视觉领域中一个重要的研究方向。传统的基于特征提取和分类器的方法已经得到了广泛的应用,但是在面对大量变化和复杂场景的时候,其性能会受到限制。近年来,深度学习的发展为人脸识别提供了一种新的方法。本文提出了一种基于卷积神经网络(CNN)的人脸识别方法。我们将输入图像直接输入到卷积神经网络中,通过多层卷积和池化操作对输入图像进行特征提取,然后通过全连接层将特征映射到类别空间中。实验结果表明,我们提出的方法在LFW(Labeled Faces in the Wild)人脸识别数据集上取得了最先进的性能。 译文:Face Recognition using Convolutional Neural Networks 作者:林亮,沈晓晖,金莲文,何然,王哲,杨建超 出处:IEEE信息安全与取证学报,第9卷,第7期,2014年7月,第1087-1097页。 摘要:人脸识别一直是计算机视觉领域的一个重要研究方向。传统的基于特征提取和分类器的方法已得到广泛应用,但在处理大量变化和复杂场景时其性能会受到限制。近年来,深度学习的发展为人脸识别提供了一种新的方法。本文提出了一种基于卷积神经网络(CNN)的人脸识别方法。我们将输入图像直接输入到卷积神经网络中,通过多层卷积和池化操作对输入图像进行特征提取,然后通过全连接层将特征映射到类别空间中。实验结果表明,我们提出的方法在LFW(Labeled Faces in the Wild)人脸识别数据集上取得了最先进的性能。
### 回答1: PaddleOCR是一个基于PaddlePaddle框架开发的OCR(Optical Character Recognition,光学字符识别)工具库,它包括文本检测、文本识别和其他相关功能。其中,文本检测模型使用了基于深度学习的精细文本检测技术,能够自适应不同尺度、姿态、形变和光照条件下的文本检测;文本识别模型使用了CRNN(Convolutional Recurrent Neural Network,卷积循环神经网络)模型进行文本识别,能够实现多字识别、中英文混合识别等功能。简言之,PaddleOCR检测和识别是基于深度学习的文本检测和文本识别模型,能够高效、准确地处理不同尺度、形变、姿态和光照条件下的文本信息。 ### 回答2: PaddleOCR是一个开源的OCR工具包,它主要用于文字识别(OCR)领域中的文本检测和文本识别问题,并且它在视觉图像领域应用广泛。具体来说,PaddleOCR使用了EAST和DB模型来进行文本检测,EAST模型是一种基于卷积神经网络的模型,它能够对长文本的区域进行检测,而DB模型则是一种基于深度学习的模型,它能够进行不同方向的识别和排版。此外,PaddleOCR还结合了CRNN和Rosetta模型进行文本识别,CRNN模型是一种循环神经网络,它能够对文本进行识别和转录,而Rosetta模型则是一种基于端到端的模型,它能够对多语言和多文本方向进行识别。总体而言,PaddleOCR作为一种强大的OCR工具包,它能够识别不同方向、多语言、不同大小和不同排版的文本,用户可以利用它来解决大量的OCR问题并提高工作效率。
好的,下面是一个基于Pytorch和GPU的手写英文字母识别系统的代码,包括详细注释和可视化性能结果: python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt # 设置GPU加速 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 加载训练集和测试集,并进行数据预处理 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) trainset = torchvision.datasets.EMNIST(root='./data', split='letters', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=2) testset = torchvision.datasets.EMNIST(root='./data', split='letters', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False, num_workers=2) # 定义神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool1 = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.pool2 = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 27) def forward(self, x): x = self.pool1(torch.relu(self.conv1(x))) x = self.pool2(torch.relu(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x net = Net().to(device) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 训练神经网络模型 for epoch in range(10): # 进行10次训练循环 running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data[0].to(device), data[1].to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 200 == 199: # 每200个小批量数据打印一次损失函数值 print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 200)) running_loss = 0.0 print('Finished Training') # 测试神经网络模型 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data[0].to(device), data[1].to(device) outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) # 输出每个类别的准确率 class_correct = list(0. for i in range(27)) class_total = list(0. for i in range(27)) with torch.no_grad(): for data in testloader: images, labels = data[0].to(device), data[1].to(device) outputs = net(images) _, predicted = torch.max(outputs, 1) c = (predicted == labels).squeeze() for i in range(64): label = labels[i] class_correct[label] += c[i].item() class_total[label] += 1 for i in range(27): print('Accuracy of %5s : %2d %%' % ( chr(i+65), 100 * class_correct[i] / class_total[i])) # 可视化神经网络模型的性能结果 dataiter = iter(testloader) images, labels = dataiter.next() outputs = net(images.to(device)) _, predicted = torch.max(outputs, 1) fig, axes = plt.subplots(nrows=5, ncols=10, figsize=(20,10)) fig.suptitle('Model Performance') for i, ax in enumerate(axes.flat): ax.imshow(images[i].squeeze(), cmap='gray') ax.set(title = f"true: {chr(labels[i]+65)}, pred: {chr(predicted[i].item()+65)}") ax.axis('off') plt.show() 注释解释: 1. 导入必要的Pytorch库和Matplotlib库。 2. 设置GPU加速。 3. 加载训练集和测试集,并进行数据预处理。这里使用了EMNIST数据集,该数据集包含了手写字母和数字的图像数据,其中每个图像为28x28像素的灰度图像。 4. 定义神经网络模型。这里使用了一个简单的卷积神经网络,包括两个卷积层和三个全连接层。 5. 定义损失函数和优化器。这里使用了交叉熵损失函数和随机梯度下降优化器。 6. 训练神经网络模型。这里进行了10次训练循环,每次循环使用64个图像进行训练。在每个小批量数据之后,打印损失函数值。 7. 测试神经网络模型。这里使用测试集对神经网络模型进行测试,并计算其准确率。 8. 输出每个类别的准确率。这里计算了每个字母的准确率。 9. 可视化神经网络模型的性能结果。这里使用测试集中的一些图像进行可视化,展示神经网络模型的预测结果。 运行代码后,可以看到每个字母的准确率,以及神经网络模型对测试集中一些图像的预测结果。
OCR(Optical Character Recognition,光学字符识别)是一种技术,可以将文字从图像或扫描文档中提取出来并转换成可编辑的文本。对于中英混合文字的识别,可以使用以下方法: 1. 预处理:首先,对图像进行预处理,包括调整图像的对比度、亮度、去除噪声等操作,以提高识别的准确性。 2. 字符分割:对于中英混合文字,需要将每个字符分割开来。这可以通过基于连通区域、投影分析或机器学习方法进行实现。 3. 特征提取:对于每个字符,提取其特征以便进行分类。可以使用传统的特征提取方法,如灰度直方图、梯度直方图、形状特征等,或者使用深度学习方法,如卷积神经网络(CNN)。 4. 字符分类:将提取的特征输入到分类器中进行分类。可以使用传统的分类算法,如支持向量机(SVM)、随机森林等,或者使用深度学习模型,如循环神经网络(RNN)、长短时记忆网络(LSTM)等。 5. 后处理:对于识别结果进行后处理,例如纠正可能的错误、合并断开的字符等。 需要注意的是,中英文的字符集不同,中文字符一般有几千个以上,而英文字符只有26个字母。因此,在识别中英混合文字时,需要选择适合的字符集和训练数据,以提高准确性。 以上是一般的OCR识别流程,具体实现可以使用开源的OCR库,如Tesseract、OpenCV等,或者使用商业OCR产品。

最新推荐

竹签数据集配置yaml文件

这个是竹签数据集配置的yaml文件,里面是我本地的路径,大家需要自行确认是否修改

半导体测试设备 头豹词条报告系列-17页.pdf.zip

行业报告 文件类型:PDF格式 打开方式:双击打开,无解压密码 大小:10M以内

ChatGPT技术在金融投资中的智能决策支持.docx

ChatGPT技术在金融投资中的智能决策支持

13、基于Jsp+MySQL的物业管理系统.zip

项目描述 主要功能有: 保安保洁管理 保修管理 房产信息管理 公告管理 管理员信息管理 业主信息管理 登录管理 技术栈 jsp + bootstrap + jquery  + DBCP 运行环境 Jdk8 + eclipse + Tomcat8.5 + mysql5.7 数据库修改后地址 url = jdbc:mysql://localhost:3306/management?characterEncoding=utf8

电力设备与新能源行业周观察中汽协公布月新能源汽车产销数据国信大丰项目海域使用申请公示-28页.pdf.zip

行业报告 文件类型:PDF格式 打开方式:直接解压,无需密码

安全文明监理实施细则_工程施工土建监理资料建筑监理工作规划方案报告_监理实施细则.ppt

安全文明监理实施细则_工程施工土建监理资料建筑监理工作规划方案报告_监理实施细则.ppt

"REGISTOR:SSD内部非结构化数据处理平台"

REGISTOR:SSD存储裴舒怡,杨静,杨青,罗德岛大学,深圳市大普微电子有限公司。公司本文介绍了一个用于在存储器内部进行规则表达的平台REGISTOR。Registor的主要思想是在存储大型数据集的存储中加速正则表达式(regex)搜索,消除I/O瓶颈问题。在闪存SSD内部设计并增强了一个用于regex搜索的特殊硬件引擎,该引擎在从NAND闪存到主机的数据传输期间动态处理数据为了使regex搜索的速度与现代SSD的内部总线速度相匹配,在Registor硬件中设计了一种深度流水线结构,该结构由文件语义提取器、匹配候选查找器、regex匹配单元(REMU)和结果组织器组成。此外,流水线的每个阶段使得可能使用最大等位性。为了使Registor易于被高级应用程序使用,我们在Linux中开发了一组API和库,允许Registor通过有效地将单独的数据块重组为文件来处理SSD中的文件Registor的工作原

typeerror: invalid argument(s) 'encoding' sent to create_engine(), using con

这个错误通常是由于使用了错误的参数或参数格式引起的。create_engine() 方法需要连接数据库时使用的参数,例如数据库类型、用户名、密码、主机等。 请检查你的代码,确保传递给 create_engine() 方法的参数是正确的,并且符合参数的格式要求。例如,如果你正在使用 MySQL 数据库,你需要传递正确的数据库类型、主机名、端口号、用户名、密码和数据库名称。以下是一个示例: ``` from sqlalchemy import create_engine engine = create_engine('mysql+pymysql://username:password@hos

数据库课程设计食品销售统计系统.doc

数据库课程设计食品销售统计系统.doc

海量3D模型的自适应传输

为了获得的目的图卢兹大学博士学位发布人:图卢兹国立理工学院(图卢兹INP)学科或专业:计算机与电信提交人和支持人:M. 托马斯·福吉奥尼2019年11月29日星期五标题:海量3D模型的自适应传输博士学校:图卢兹数学、计算机科学、电信(MITT)研究单位:图卢兹计算机科学研究所(IRIT)论文主任:M. 文森特·查维拉特M.阿克塞尔·卡里尔报告员:M. GWendal Simon,大西洋IMTSIDONIE CHRISTOPHE女士,国家地理研究所评审团成员:M. MAARTEN WIJNANTS,哈塞尔大学,校长M. AXEL CARLIER,图卢兹INP,成员M. GILLES GESQUIERE,里昂第二大学,成员Géraldine Morin女士,图卢兹INP,成员M. VINCENT CHARVILLAT,图卢兹INP,成员M. Wei Tsang Ooi,新加坡国立大学,研究员基于HTTP的动态自适应3D流媒体2019年11月29日星期五,图卢兹INP授予图卢兹大学博士学位,由ThomasForgione发表并答辩Gilles Gesquière�