plt.figure() plt.plot(epochs,loss,"bo",label="trainng loss") plt.plot(epochs,val_loss,"b",label="validation loss") plt.title("training and validation loss") plt.legend() plt.show()这段代码是干嘛的
时间: 2023-07-19 15:27:19 浏览: 141
这段代码是用来绘制训练和验证损失函数随训练轮数变化的曲线。其中,`epochs`是训练的轮数,`loss`是每轮训练的损失函数值,`val_loss`是每轮验证的损失函数值。`plt.plot`函数用来绘制曲线,"bo"表示蓝色圆点,"b"表示蓝色实线。`plt.title`函数用来设置图标题,`plt.legend`函数用来设置图例,`plt.show`函数用来显示绘制好的图形。
相关问题
def draw_loss(n_epochs, losses, val_losses): epochs_range = range(n_epochs) fig1=plt.figure(figsize=(4,3)) plt.plot(epochs_range, losses, 'orange', label='train loss') plt.plot(epochs_range, val_losses, '-.k', label='test loss') # plt.title('loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.savefig('experiments/loss_figure.png')
这是一个用于绘制训练和验证损失的函数。它接受三个参数:n_epochs 表示训练迭代的总数,losses 表示每个迭代的训练损失,val_losses 表示每个迭代的验证损失。它使用 matplotlib 库来创建一个简单的折线图,其中包含训练和验证损失。每个损失都用不同的颜色表示,并添加了图例。最后,它将图像保存到 experiments/loss_figure.png 文件中。
import matplotlib.pyplot as plt acc=history.history["accuracy"] #fit方法返口的history类对象 #History类对象包含两个属性,分别为epoch(训练轮数)和history。History)所包含的内容是由compile参数的metrics确定的 loss=history.history["loss"]#训练集loss val_acc=history.history["val_accuracy"] val_loss=history.history["val_loss"]#测试集loss epochs=range(1,len(loss)+1) plt.figure() plt.plot(epochs,acc,"bo",label="Training acc") plt.plot(epochs,val_acc,"b",label="validation acc" ) plt.title("training and validation acc") plt.legend() plt.show()
这段代码是用来绘制训练集和测试集准确率随训练轮数变化的曲线。其中,`acc`是训练集的准确率,`val_acc`是测试集的准确率,`loss`是训练集的损失函数值,`val_loss`是测试集的损失函数值。`epochs`是训练的轮数。`plt.plot`函数用来绘制曲线,"bo"表示蓝色圆点,"b"表示蓝色实线。`plt.title`函数用来设置图标题,`plt.legend`函数用来设置图例,`plt.show`函数用来显示绘制好的图形。
阅读全文