动态规划完全背包代码

时间: 2024-08-29 09:02:42 浏览: 32
动态规划是一种算法设计技巧,通过将复杂问题分解为更小的子问题,并存储子问题的解,以避免重复计算。完全背包问题是一种典型的动态规划问题。在这个问题中,你有一个背包,能够携带重量为W的物品,以及一系列不同的物品,每个物品都有自己的重量和价值。完全背包问题的目标是确定哪些物品应该放入背包中,以使得背包中物品的总价值最大,同时不超过背包的承重限制。 以下是使用动态规划解决完全背包问题的伪代码: ```plaintext 初始化: dp[0...W] = 0 for 每个物品 i from 1 to n: for w from 0 to W: if w >= weight[i]: // 如果当前物品可以放入背包 dp[w] = max(dp[w], dp[w - weight[i]] + value[i]) ``` 在上述伪代码中,`dp`数组用于存储每个重量下的最大价值,`W`是背包的承重,`n`是物品的总数,`weight[i]`和`value[i]`分别表示第`i`个物品的重量和价值。对于每一个物品,我们检查它是否可以放入背包(即背包当前的重量是否足够),如果可以,我们就在当前重量的基础上更新最大价值。
相关问题

动态规划完全背包问题c语言代码

动态规划的完全背包问题是经典的动态规划问题之一,其思路是将问题分解为若干个子问题,利用子问题的最优解来求解原问题的最优解。下面是完全背包问题的c语言代码实现: ```c #include <stdio.h> #define MAX_N 100 #define MAX_V 1000 int n, V; int w[MAX_N], v[MAX_N]; int dp[MAX_N + 1][MAX_V + 1]; int max(int a, int b) { return a > b ? a : b; } void solve() { for (int i = 0; i < n; i++) { for (int j = 0; j <= V; j++) { for (int k = 0; k * w[i] <= j; k++) { dp[i + 1][j] = max(dp[i + 1][j], dp[i][j - k * w[i]] + k * v[i]); } } } printf("%d\n", dp[n][V]); } int main() { scanf("%d%d", &n, &V); for (int i = 0; i < n; i++) { scanf("%d%d", &w[i], &v[i]); } solve(); return 0; } ```

完全背包问题动态规划代码

以下是完全背包问题的动态规划代码: ```python def knapsack(weights, values, capacity): n = len(weights) dp = [0] * (capacity + 1) for i in range(n): for j in range(weights[i], capacity + 1): dp[j] = max(dp[j], dp[j - weights[i]] + values[i]) return dp[capacity] ``` 其中,`weights`是物品的重量列表,`values`是物品的价值列表,`capacity`是背包的容量。`dp`是一个列表,用来记录当前背包容量下所能获得的最大价值。 外层循环遍历每一个物品,内层循环则遍历所有的背包容量,从当前物品的重量开始,逐步增加背包容量,计算所能获得的最大价值。最终返回`dp[capacity]`,即背包容量为`capacity`时所能获得的最大价值。

相关推荐

最新推荐

recommend-type

Python基于动态规划算法解决01背包问题实例

了解01背包问题及其动态规划解决方案,有助于提升处理类似组合优化问题的能力,例如完全背包问题、多重背包问题等。此外,动态规划的思想也广泛应用于其他领域,如图论中的最短路径问题、最长公共子序列等。掌握这一...
recommend-type

0-1背包问题(动态规划)报告.doc

源代码包含了一个名为 `knapsack` 的函数,用于实现0-1背包问题的动态规划求解。在函数中,使用了 `vector` 存储二维数组 `p`,并利用指针 `left`, `right`, `next` 来高效地更新和查找跳跃点,以提高算法的执行效率...
recommend-type

python基于递归解决背包问题详解

这是一个典型的0-1背包问题,即每件物品要么完全被选中,要么不被选中。 首先,我们需要定义基本情况,即没有物品可选或背包容量为0。如果背包容量为0,意味着无法放入任何物品,因此返回True表示找到了一个解(空...
recommend-type

基于微信小程序的新生报到系统设计与实现.docx

基于微信小程序的新生报到系统设计与实现.docx
recommend-type

基于java的电商平台的设计与实现.docx

基于java的电商平台的设计与实现.docx
recommend-type

十种常见电感线圈电感量计算公式详解

本文档详细介绍了十种常见的电感线圈电感量的计算方法,这对于开关电源电路设计和实验中的参数调整至关重要。计算方法涉及了圆截面直导线、同轴电缆线、双线制传输线、两平行直导线间的互感以及圆环的电感。以下是每种类型的电感计算公式及其适用条件: 1. **圆截面直导线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi r} \) (在 \( l >> r \) 的条件下) - \( l \) 表示导线长度,\( r \) 表示导线半径,\( \mu_0 \) 是真空导磁率。 2. **同轴电缆线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi (r1 + r2)} \) (忽略外导体厚度) - \( r1 \) 和 \( r2 \) 分别为内外导体直径。 3. **双线制传输线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi^2 D \ln(\frac{D+r}{r})} \) (条件:\( l >> D, D >> r \)) - \( D \) 是两导线间距离。 4. **两平行直导线的互感** - 公式:\( M = \frac{\mu_0 l}{2\pi r} \ln(\frac{D}{d}) \) (条件:\( D >> r \)) - \( d \) 是单个导线半径,互感与距离 \( D \) 有关。 5. **圆环的电感** - 公式:\( L = \mu_0 R \ln(\frac{R}{r}) \) - \( R \) 是圆环的外半径,\( r \) 是圆环截面的半径。 在电路设计中,计算这些电感值有助于确保电路性能的准确性和稳定性。值得注意的是,实际应用中还需要考虑线圈的形状、材料(包括磁芯的相对导磁率)和外部因素,如磁珠的影响。此外,这些公式通常是在理想化情况下给出的,实际应用中可能需要考虑非线性效应和频率依赖性。对于复杂线圈,可能需要借助于电磁场仿真软件进行精确计算。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【树结构遍历操作】:JavaScript深度优先与广度优先算法详解

![js+数据结构更改](https://www.freecodecamp.org/news/content/images/2021/04/JavaScript-splice-method.png) # 1. 树结构遍历操作概述 在计算机科学中,树结构是表示数据的一种重要方式,尤其在处理层次化数据时显得尤为重要。树结构遍历操作是树上的核心算法,它允许我们访问树中每一个节点一次。这种操作广泛应用于搜索、排序、以及各种优化问题中。本章将概览树结构遍历的基本概念、方法和实际应用场景。 ## 1.1 树结构的定义与特性 树是由一个集合作为节点和一组连接这些节点的边构成的图。在树结构中,有一个特殊
recommend-type

年份是否为闰年C语言判断

在C语言中,判断一个年份是否为闰年的标准有以下几个规则: 1. **普通闰年**:能被4整除但不能被100整除的年份是普通闰年,如2004年就是闰年。 2. **世纪闰年**:能被400整除的年份也是闰年,但如果是整百数(例如1900年),则需要满足能被400整除才能是闰年。 下面是简单的C语言函数来判断一个年份是否是闰年: ```c #include <stdbool.h> bool is_leap_year(int year) { if (year % 4 != 0) { // 如果不是4的倍数,则直接返回false return false; }
recommend-type

军用车辆:CAN总线的集成与优势

本文探讨了CAN总线在军用车辆中的应用,针对军用车辆电子系统的发展趋势和需求,着重分析了将CAN总线技术引入军用车辆的必要性和可行性。军用车辆的电子化程度日益提高,电子设备的集成和资源共享成为关键,以提升整体性能和作战效能。CAN总线(Controller Area Network)作为一种成功的民用汽车通信技术,因其模块化、标准化、小型化以及高效能的特点,被提出作为军用车辆的潜在解决方案。 首先,文章指出军用车辆的数据通信需求不同于一般计算机网络,它强调实时性、可靠性、短帧信息传输、频繁的信息交换以及高安全性。CAN总线正好满足这些特殊要求,它支持多主机通信模式,允许灵活的数据交换,并且具有固定的报文格式,这在满足军用车辆实时和高效的数据处理中具有优势。 对比了CAN总线与传统的军用通信标准1553B后,文中强调了CAN总线在可靠性方面的明显优势,尤其是在复杂环境和高负载情况下,其容错能力和故障自愈能力使其在军用车辆中的应用更具吸引力。此外,CAN总线的成本效益也是其在军用领域得到广泛应用的一个重要因素。 文章详细介绍了CAN总线的工作原理和特点,比如它的仲裁机制能够有效管理多个节点间的通信,避免冲突,同时其低数据速率适合于军用车辆的实时通信需求。在介绍完CAN总线的优势后,文章还可能探讨了实际应用中的挑战,如如何确保网络的安全性、如何进行有效的系统集成等问题,以及如何通过研发和优化来克服这些挑战。 本文通过对CAN总线特性的深入剖析,证明了将其应用于军用车辆是切实可行且具有重大意义的,为军用车辆电子系统的现代化和成本效益最大化提供了新的思路和技术路径。