class BasicBlock(nn.Sequential):
时间: 2023-12-25 17:27:24 浏览: 71
`class BasicBlock(nn.Sequential)`是一个基本的卷积神经网络块,由两个卷积层和一个恒等映射组成。该块的输入通过第一个卷积层进行卷积操作,然后通过激活函数进行激活,再通过第二个卷积层进行卷积操作,最后将该块的输出与输入相加,得到该块的最终输出。这个过程可以用以下代码表示:
```python
class BasicBlock(nn.Sequential):
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.downsample = downsample
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
```
阅读全文