class BasicBlock(layers.Layer): expansion = 1 def init(self, in_channels, out_channels, stride=1): super(BasicBlock, self).init() # 1. BasicBlock模块中的共有2个卷积;BasicBlock模块中的第1个卷积层; self.conv1 = regularized_padded_conv(out_channels, kernel_size=3, strides=stride) self.bn1 = layers.BatchNormalization() # 2. 第2个;第1个卷积如果做stride就会有一个下采样,在这个里面就不做下采样了。这一块始终保持size一致,把stride固定为1 self.conv2 = regularized_padded_conv(out_channels, kernel_size=3, strides=1) self.bn2 = layers.BatchNormalization() # 3. 判断stride是否等于1,如果为1就是没有降采样。 if stride != 1 or in_channels != self.expansion * out_channels: self.shortcut = Sequential([regularized_padded_conv(self.expansion * out_channels, kernel_size=1, strides=stride), layers.BatchNormalization()]) else: self.shortcut = lambda x, _: x self.max= layers.GlobalMaxPooling2D(kernel_size=2, stride=2) def call(self, inputs, training=False): out = self.conv1(inputs) out = self.bn1(out, training=training) out = tf.nn.relu(out) out = self.conv2(out) out = self.bn2(out, training=training) out = out + self.shortcut(inputs, training) out = self.max(out) out = tf.nn.relu(out) return out 权重形状
时间: 2024-02-14 10:35:53 浏览: 38
TensorFlow.js、迁移学习与AI产品创新之道
由于代码中没有给出具体的权重值,所以无法确定权重的形状。但可以根据代码中卷积层的参数推算出权重形状。例如,在第一个卷积层中,使用了名为`regularized_padded_conv`的函数,该函数会创建一个`tf.keras.layers.Conv2D`实例,其中`out_channels`表示输出通道数,`kernel_size`表示卷积核大小,因此该卷积层的权重形状为`(kernel_size, kernel_size, in_channels, out_channels)`,其中`in_channels`表示输入通道数。其他卷积层的权重形状也可以按照同样的方式推算。
阅读全文