class BasicBlock1(layers.Layer): expansion = 1 def init(self, in_channels, out_channels, stride=1): super(BasicBlock, self).init() # 1. BasicBlock模块中的共有2个卷积;BasicBlock模块中的第1个卷积层; self.conv1 = regularized_padded_conv(out_channels, kernel_size=3, strides=stride) self.bn1 = layers.BatchNormalization() # 2. 第2个;第1个卷积如果做stride就会有一个下采样,在这个里面就不做下采样了。这一块始终保持size一致,把stride固定为1 self.conv2 = regularized_padded_conv(out_channels, kernel_size=3, strides=1) self.bn2 = layers.BatchNormalization() ############################### 注意力机制 ############################### self.ca = ChannelAttention(out_channels) self.sa = SpatialAttention() # 3. 判断stride是否等于1,如果为1就是没有降采样。 if stride != 1 or in_channels != self.expansion * out_channels: self.shortcut = Sequential([regularized_padded_conv(self.expansion * out_channels, kernel_size=1, strides=stride), layers.BatchNormalization()]) else: self.shortcut = lambda x, _: x def call(self, inputs, training=False): out = self.conv1(inputs) out = self.bn1(out, training=training) out = tf.nn.relu(out) out = self.conv2(out) out = self.bn2(out, training=training) ############################### 注意力机制 ############################### out = self.ca(out) * out out = self.sa(out) * out out = out + self.shortcut(inputs, training) out = tf.nn.relu(out) return out有没有错
时间: 2024-02-15 22:27:34 浏览: 65
这段代码看起来没有语法错误,但是需要知道 `regularized_padded_conv`、`ChannelAttention` 和 `SpatialAttention` 是什么函数或类,才能确定整个代码的正确性。此外,需要在调用这个模块(`BasicBlock1`)时传入正确的参数才能保证功能正确。
相关问题
class BasicBlock1(layers.Layer): expansion = 1 def __init__(self, in_channels, out_channels, stride=1): super(BasicBlock, self).__init__() g\对不对
这段代码有一个问题:在 `super()` 函数中应该使用当前类的名称 `BasicBlock1` 而不是 `BasicBlock`,因为这个类的名称是 `BasicBlock1`。正确的代码应该如下所示:
```
class BasicBlock1(layers.Layer):
expansion = 1
def __init__(self, in_channels, out_channels, stride=1):
super(BasicBlock1, self).__init__()
# rest of the code
```
这样,`super()` 函数将会调用 `BasicBlock1` 的父类的构造函数,而不是 `BasicBlock` 的。
class BasicBlock2D(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1): super(BasicBlock2D, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if stride != 1 or in_channels != self.expansion * out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * out_channels) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out # 定义二维ResNet-18模型 class ResNet18_2D(nn.Module): def __init__(self, num_classes=1000): super(ResNet18_2D, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(BasicBlock2D, 64, 2, stride=1) self.layer2 = self._make_layer(BasicBlock2D, 128, 2, stride=2) self.layer3 = self._make_layer(BasicBlock2D, 256, 2, stride=2) self.layer4 = self._make_layer(BasicBlock2D, 512, 2, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 , 512) def _make_layer(self, block, out_channels, num_blocks, stride): layers = [] layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels * block.expansion for _ in range(1, num_blocks): layers.append(block(self.in_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.maxpool(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) # print(out.shape) out = out.view(out.size(0), -1) out = self.fc(out) return out改为用稀疏表示替换全连接层
为了用稀疏表示替换全连接层,需要先将特征图展平,然后使用稀疏矩阵与其进行乘法运算。
以下是修改后的代码:
```
import torch.sparse as sparse
class ResNet18_2D(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet18_2D, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(BasicBlock2D, 64, 2, stride=1)
self.layer2 = self._make_layer(BasicBlock2D, 128, 2, stride=2)
self.layer3 = self._make_layer(BasicBlock2D, 256, 2, stride=2)
self.layer4 = self._make_layer(BasicBlock2D, 512, 2, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
# 替换全连接层
self.fc = nn.Identity()
def _make_layer(self, block, out_channels, num_blocks, stride):
layers = []
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels * block.expansion
for _ in range(1, num_blocks):
layers.append(block(self.in_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.maxpool(out)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avgpool(out)
out = out.view(out.size(0), -1)
# 使用稀疏矩阵与展平后的特征图进行乘法运算
out = sparse.mm(out, nn.Parameter(torch.randn(out.size(1), 512)))
return out
```
阅读全文