stm32hal陀螺仪控制舵机
时间: 2023-11-22 09:04:50 浏览: 201
根据提供的引用内容,我们可以得知舵机的控制需要一个20ms左右的时基脉冲,因此需要将舵机的PWM的频率设置为50HZ。而陀螺仪的控制需要使用MPU6050,并且开发环境为STM32CubeMX + Keil 5,代码库为HAL库。因此,我们可以通过以下步骤来实现stm32hal陀螺仪控制舵机:
1. 配置舵机的PWM频率为50HZ,将引脚连接到正确的引脚上。
2. 配置MPU6050,包括初始化和读取数据。
3. 根据读取到的陀螺仪数据计算出需要控制舵机的角度。
4. 将计算出的角度转换为对应的PWM占空比,并输出到舵机引脚上。
下面是一个简单的示例代码,用于控制舵机的角度:
```c
#include "stm32f4xx_hal.h"
#include "math.h"
#define PWM_FREQUENCY 50 // 舵机PWM频率
#define PWM_PERIOD (1000000 / PWM_FREQUENCY) // 舵机PWM周期
TIM_HandleTypeDef htim2; // 定义TIM2句柄
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM2_Init(void);
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_TIM2_Init();
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1); // 启动PWM输出
while (1)
{
// 读取陀螺仪数据
float gyro_x = read_gyro_x();
float angle = calculate_angle(gyro_x);
// 将角度转换为PWM占空比
uint16_t pulse_width = (uint16_t)(angle / 180.0 * (2000 - 1000) + 1000);
// 输出PWM占空比
TIM2->CCR1 = pulse_width;
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 168;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
}
static void MX_TIM2_Init(void)
{
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
htim2.Instance = TIM2;
htim2.Init.Prescaler = (SystemCoreClock / 1000000) - 1;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = PWM_PERIOD - 1;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
}
// 读取陀螺仪数据
float read_gyro_x()
{
// TODO: 读取陀螺仪数据
return 0.0;
}
// 计算舵机角度
float calculate_angle(float gyro_x)
{
// TODO: 根据陀螺仪数据计算舵机角度
return 0.0;
}
```
阅读全文