生成代码 python实现bp神经网络
时间: 2023-09-09 17:09:47 浏览: 97
好的,我可以回答这个问题。以下是一个基本的BP神经网络Python实现的示例代码:
```
import numpy as np
class NeuralNetwork():
def __init__(self):
np.random.seed(1)
self.synaptic_weights = 2 * np.random.random((3, 1)) - 1
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def sigmoid_derivative(self, x):
return x * (1 - x)
def train(self, training_inputs, training_outputs, training_iterations):
for iteration in range(training_iterations):
output = self.think(training_inputs)
error = training_outputs - output
adjustments = np.dot(training_inputs.T, error * self.sigmoid_derivative(output))
self.synaptic_weights += adjustments
def think(self, inputs):
inputs = inputs.astype(float)
output = self.sigmoid(np.dot(inputs, self.synaptic_weights))
return output
if __name__ == "__main__":
neural_network = NeuralNetwork()
print("随机初始突触连接权重:")
print(neural_network.synaptic_weights)
training_inputs = np.array([[0, 0, 1],
[1, 1, 1],
[1, 0, 1],
[0, 1, 1]])
training_outputs = np.array([[0, 1, 1, 0]]).T
neural_network.train(training_inputs, training_outputs, 10000)
print("训练后的突触连接权重:")
print(neural_network.synaptic_weights)
print("测试新数据集:")
print(neural_network.think(np.array([1, 0, 0])))
```
这段代码实现了一个基本的BP神经网络,包括初始化、sigmoid函数、sigmoid导数、训练和预测。您可以使用以上代码来了解Python实现BP神经网络的基本方法。
阅读全文