Academic Torrents国内镜像
时间: 2023-12-16 19:40:10 浏览: 194
很抱歉,目前我无法提供Academic Torrents在国内的镜像站点信息。Academic Torrents是一个面向学术界的种子分享平台,主要服务于全球用户,可能没有专门为国内用户提供镜像站点。你可以尝试使用科研机构或大学的网络资源来下载ILSVRC数据集,或者使用其他方式获取数据集。另外,也可以尝试使用其他公共种子分享平台或者通过其他渠道获取所需的数据集。请注意,下载和使用数据集时要遵守相关的许可协议和法律规定。
相关问题
if not tdu.is_prepared(self.root): # prep print("Preparing dataset {} in {}".format(self.NAME, self.root)) datadir = self.datadir if not os.path.exists(datadir): path = os.path.join(self.root, self.FILES[0]) if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]: import academictorrents as at atpath = at.get(self.AT_HASH, datastore=self.root) assert atpath == path print("Extracting {} to {}".format(path, datadir)) os.makedirs(datadir, exist_ok=True) with tarfile.open(path, "r:") as tar: tar.extractall(path=datadir) print("Extracting sub-tars.") subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar"))) for subpath in tqdm(subpaths): subdir = subpath[:-len(".tar")] os.makedirs(subdir, exist_ok=True) with tarfile.open(subpath, "r:") as tar: tar.extractall(path=subdir)解析
这段代码首先调用了一个名为is_prepared()的函数来检查数据集是否已经准备好。如果数据集没有准备好,代码则会执行数据集的准备工作,包括:
1. 创建数据集文件目录;
2. 下载数据集文件,或者从Academic Torrents中下载;
3. 解压数据集文件到对应的目录中。
具体来说,代码的含义如下:
- 第一行代码调用了is_prepared()函数来检查数据集是否已经准备好。is_prepared()函数是一个自定义函数,用于检查数据集文件是否已经准备好。如果准备好,函数返回True,否则返回False。
- 第二行代码判断如果数据集文件没有准备好,则打印一条日志信息,并开始准备数据集。
- 第三行代码将数据集文件目录路径存储到datadir变量中。
- 第四行代码检查数据集文件目录是否存在,如果不存在,则需要下载数据集文件。
- 第五行代码定义了一个变量path,表示数据集文件的路径。该变量的值是self.FILES[0],即数据集文件的文件名。
- 第六行代码检查数据集文件是否已经下载完成,如果没有下载完成,则通过Academic Torrents下载。
- 第七行代码打印一条日志信息,表示正在将数据集文件解压到对应的目录中。
- 第八行代码创建数据集文件目录,如果该目录已经存在,则不会重复创建。
- 第九行代码使用tarfile模块来解压数据集文件到对应的目录中。
- 第十行代码打印一条日志信息,表示正在解压数据集的子文件。
- 第十一行代码获取所有的子文件路径,并按字典序排序。
- 第十二行代码遍历所有的子文件路径,并将它们解压到对应的目录中。
marker-pdf
### marker-PDF Library or Tool for PDF Markup and Annotation
In the context of software development, **marker-PDF** refers to libraries or tools designed specifically for adding annotations and markups to Portable Document Format (PDF) files. These solutions enable developers to integrate robust document manipulation capabilities into applications.
One notable resource is **Academic Torrents**, which provides access to various datasets that might include information on different types of documents including those related to PDF processing technologies[^1]. However, this site primarily focuses on academic resources rather than specific coding libraries.
For direct interaction with PDFs through programming interfaces, several dedicated Python packages exist:
#### PyMuPDF
PyMuPDF offers extensive support for reading, manipulating, creating, modifying, and writing PDF files along with other formats like XPS or EPUB. It includes comprehensive features for text extraction, image handling, hyperlink management as well as annotation creation.
```python
import fitz # PyMuPDF alias
doc = fitz.open("example.pdf")
page = doc.load_page(0) # loads page number '0'
annot = page.add_text_annot((72, 72), "This is an example comment.")
annot.set_open(True)
doc.save("output_with_annotation.pdf", garbage=4, deflate=True)
```
Another option worth exploring would be **pdfminer.six**, although it has more limited functionality compared to PyMuPDF when dealing strictly with annotations.
#### pdfAnnotate.js
On web platforms, JavaScript-based frameworks such as `pdfAnnotate.js` provide interactive ways to create rich user experiences around viewing annotated PDF content within browsers without requiring server-side components beyond serving static assets initially loaded by clients.
--related questions--
1. What are key differences between PyMuPDF and similar libraries?
2. How can one implement real-time collaboration using client-side PDF annotation tools?
3. Are there any open-source projects utilizing these libraries effectively showcased online?
阅读全文