gen LEV65 = quantile(LEV, .65)出错 unknown function quantile()

时间: 2024-09-21 15:01:43 浏览: 42
抱歉,看来你在尝试使用Stata的过程中遇到了问题。`quantile()`确实是Stata中用于生成分位数的内置函数,但它通常用于描述性统计分析,而不是直接作为`gen`(生成新变量)命令的一部分。你提供的`gen LEV65 = quantile(LEV, .65)`可能会导致错误,因为直接在赋值语句中使用`quantile()`不是标准语法。 正确的做法是在`generate`或`gen`之后,先创建一个新的临时变量,然后利用这个临时变量设置新的变量值。例如: ```stata tempvar levq // 创建一个临时变量存储分位数 foreach v of varlist varlist_name { // 将varlist_name替换为你实际的变量名列表 quietly replace levq = quantile(`v', .65) } gen double LEV65 = levq ``` 或者,如果只需要针对单一变量`LEV`操作: ```stata quietly tempvar levq replace levq = quantile(LEV, .65) gen double LEV65 = levq ``` 请确保你已经安装了适当的包(如`stats`或默认的Stata内置函数),并检查你的变量是否已编码为数值类型。
相关问题

UPDATE salary SET checkoff = ( SELECT new.checkoff FROM withhold left JOIN employee ON new.emp_lev = employee.emp_lev where employee.salarycard = salary.salarycard ) WHERE EXISTS (SELECT salarycard FROM employee WHERE employee.salarycard = salary.salarycard and new.emp_lev = employee.emp_lev ) 出现查询结果不唯一的错误

这个错误是因为在子查询中返回了多个结果。你可以尝试在子查询中使用聚合函数,如SUM()或AVG(),来确保只返回一个结果。例如: ``` UPDATE salary SET checkoff = ( SELECT SUM(new.checkoff) FROM withhold LEFT JOIN employee ON new.emp_lev = employee.emp_lev WHERE employee.salarycard = salary.salarycard ) WHERE EXISTS ( SELECT salarycard FROM employee WHERE employee.salarycard = salary.salarycard AND new.emp_lev = employee.emp_lev ) ``` 这个查询将返回 withhold 表中新雇员等级的所有扣款的总和,然后将其更新到 salary 表中的 checkoff 列。注意,这个查询仅更新符合条件的行,因为使用了 WHERE EXISTS 子句。

优化下面这段代码:List<Map<String,Object>> list = new ArrayList<>(); for (int i = 0; i < personDist.length; i++) { if (list.size() == kpiScoreSummary.size()){ break; } int j = personDist[i]; int size = list.size(); for (int x = size; x < size + j; x++) { Map<String, Object> map = kpiScoreSummary.get(x); double actualScoreD = (double) map.get("ACTUALSCORE"); if (actualScoreD >= 90 && i == 0){ map.put("lev","1.1"); }else if (actualScoreD >= 80 && i == 1){ map.put("lev","1"); }else if (actualScoreD >= 70 && i == 2){ map.put("lev","0.9"); }else if (actualScoreD >= 60 && i == 3){ map.put("lev","0.8"); }else { map.put("lev","0.7"); } list.add(map); } }

这段代码的主要性能瓶颈在于循环嵌套中的内部循环,每次循环都要从集合中取出元素,进行判断和修改操作,导致了时间复杂度较高。以下是一些可能的优化建议: 1. 将列表遍历的操作放到外部循环中:将遍历列表的操作放到外部循环中,可以减少内部循环的次数。具体来说,可以将变量 size 移到外部循环之前,这样内部循环只需要遍历 size ~ size+j-1 这个范围即可。 2. 预先筛选出符合条件的元素:由于每次循环都需要判断元素是否符合条件,这个操作可以在循环之前进行,将符合条件的元素以及对应的等级保存到一个 Map 中,然后在循环中直接取出即可,这样可以减少循环中的判断操作。 3. 使用基本数据类型:对于变量 i、j、size 等,可以使用基本数据类型 int,而不是 Integer 类型,这样可以减少自动装箱和拆箱操作。 下面是优化后的代码: ``` List<Map<String,Object>> list = new ArrayList<>(); int size = 0; Map<Double, String> levelMap = new HashMap<>(); levelMap.put(90.0, "1.1"); levelMap.put(80.0, "1"); levelMap.put(70.0, "0.9"); levelMap.put(60.0, "0.8"); double[] thresholds = {90.0, 80.0, 70.0, 60.0}; for (int i = 0; i < personDist.length && list.size() < kpiScoreSummary.size(); i++) { int j = personDist[i]; size += j; for (int x = size - j; x < size && list.size() < kpiScoreSummary.size(); x++) { Map<String, Object> map = kpiScoreSummary.get(x); double actualScoreD = (double) map.get("ACTUALSCORE"); String level = "0.7"; for (int k = 0; k < thresholds.length; k++) { if (actualScoreD >= thresholds[k] && i == k) { level = levelMap.get(thresholds[k]); break; } } map.put("lev", level); list.add(map); } } ``` 优化后的代码中,通过预先将符合条件的等级保存到 Map 中,减少了循环中的判断操作;将列表遍历的操作放到外部循环中,减少了内部循环的次数;使用基本数据类型,避免了自动装箱和拆箱操作。
阅读全文

相关推荐

fshum=r"D:\xdshixi120112021203\DATA\shum.mon.mean.nc" fu=r"D:\xdshixi120112021203\DATA\uwnd.mon.mean.nc" fv=r"D:\xdshixi120112021203\DATA\vwnd.mon.mean.nc" shumds=xr.open_dataset(fshum) uds=xr.open_dataset(fu) vds=xr.open_dataset(fv) # shumds1=shumds['shum'] Stime12=shumds1.sel(time=slice('1948','2020')).groupby('time.month').mean(dim='time') # print(Stime12) # print(Stime1) lev = Stime12.level # 读取气压层,单位为mb,即hPa,一维的14. lat = Stime12.lat # 读取纬度,一维的21 lon = Stime12.lon # 读取经度,一维的41 uds1=uds['uwnd'] Utime12=uds1.sel(time=slice('1948','2020')).groupby('time.month').mean(dim='time') # print(Utime12) vds1=vds['vwnd'] Vtime12=vds1.sel(time=slice('1948','2020')).groupby('time.month').mean(dim='time') u = Utime12[0,2,:,:] # U风分量,单位为m/s,month,level,lat,lon v = Vtime12[0,2,:,:] # V风分量,单位为m/s q =Stime12[0,2,:,:] # 读取比湿,单位为kg/kg # print(u) # 计算单层水汽通量和水汽通量散度 qv_u = uq/(constants.g10**-2) # g的单位为m/s2,换算为N/kg,再换算为10-2hPa·m2/kg,最终单层水汽通量的单位是kg/m•hPa•s qv_v = vq/(constants.g10**-2) # 计算q*v/g,单位是kg/m•hPa•s # print(qv_u) dx, dy = mpcalc.lat_lon_grid_deltas(lon, lat) # 将经纬度转换为格点距离 # print(dx,dy) div_qv = np.zeros((lev.shape[0],lat.shape[0],lon.shape[0])) # print(div_qv) # print(lev.shape[0]) for j in range(lev.shape[0]): div_qv[j] = mpcalc.divergence(u = qv_u[j],v = qv_v[j],dx = dx ,dy = dy) # 单位是kg/m2•hPa•s print(div_qv[j])为什么报错operands could not be broadcast together with shapes (72,143) (142,) ,需要怎么改

最新推荐

recommend-type

A级景区数据文件json

A级景区数据文件json
recommend-type

使用Java编写的坦克大战小游戏.zip学习资料

python 使用Java编写的坦克大战小游戏.zip学习资料
recommend-type

【python毕设】p073基于Spark的温布尔登特色赛赛事数据分析预测及算法实现_flask(5).zip

项目资源包含:可运行源码+sql文件+; python3.7+flask+spark+mysql5.7+vue 适用人群:学习不同技术领域的小白或进阶学习者;可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 项目具有较高的学习借鉴价值,也可拿来修改、二次开发。 有任何使用上的问题,欢迎随时与博主沟通,博主看到后会第一时间及时解答。 系统是一个很好的项目,结合了后端服务(flask)和前端用户界面(Vue.js)技术,实现了前后端分离。 后台路径地址:localhost:8080/项目名称/admin/dist/index.html 前台路径地址:localhost:8080/项目名称/front/index.html
recommend-type

C#编写的OPCClient 利用OPCDAAuto.dll

1.执行setup64.bat注册com组件。文件是64位系统,如果是32位系统请自行修改(C:\Windows\System32) 2.程序目标框架改为.net4,否则报错。
recommend-type

用Python编程实现控制台爱心形状绘制技术教程

内容概要:本文档主要讲解了使用不同编程语言在控制台绘制爱心图形的方法,特别提供了Python语言的具体实现代码。其中包括了一个具体的函数 draw_heart() 实现,使用特定规则在控制台上输出由星号组成的心形图案,代码展示了基本的条件判断以及字符打印操作。 适合人群:对编程有兴趣的学生或者初学者,特别是想要学习控制台图形输出技巧的人。 使用场景及目标:适合作为编程入门级练习,帮助学生加深对于控制流、字符串处理及图形化输出的理解。也可以作为一个简单有趣的项目用来表达情感。 阅读建议:建议读者尝试动手运行并修改代码,改变输出图形的颜色、大小等特性,从而提高对Python基础语法的掌握程度。
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。