在列立误差方程前先进行未知点的近似高程计算,在昨天给出的不用engin库的水准间接平差完整代码上进行修改

时间: 2024-04-15 17:28:13 浏览: 158
以下是在昨天给出的不使用Eigen库的水准间接平差完整代码基础上进行修改后的代码,添加了未知点的近似高程计算: ```cpp #include <iostream> #include <fstream> #include <vector> #include <cmath> // 观测高差类的设计 class CElvDif { private: double _value; // 观测值 double _weight; // 权重 long _startPoint; // 起始点编号 long _endPoint; // 终点编号 public: // 构造函数 CElvDif(double value, double weight, long startPoint, long endPoint) : _value(value), _weight(weight), _startPoint(startPoint), _endPoint(endPoint) {} // 获取观测值 double getValue() const { return _value; } // 获取权重 double getWeight() const { return _weight; } // 获取起始点编号 long getStartPoint() const { return _startPoint; } // 获取终点编号 long getEndPoint() const { return _endPoint; } }; // 水准点类的设计 class CLevelPoint { private: long _index; // 水准点编号 double _eleValue; // 高程值 double _dv; // 高程值改正数(初始化为 0) bool _isKnown; // 是否为已知点 public: // 构造函数 CLevelPoint(long index, double eleValue, bool isKnown) : _index(index), _eleValue(eleValue), _dv(0.0), _isKnown(isKnown) {} // 获取水准点编号 long getIndex() const { return _index; } // 获取高程值 double getEleValue() const { return _eleValue; } // 设置高程值 void setEleValue(double value) { _eleValue = value; } // 获取高程值改正数 double getDv() const { return _dv; } // 设置高程值改正数 void setDv(double value) { _dv = value; } // 是否为已知点 bool isKnown() const { return _isKnown; } }; // 水准平差计算类的设计 class CElevationNet { private: int numElvDif; // 观测值(高差)总数 int numPoints; // 控制网中点的数目 int numKnPoint; // 控制网中已知点的数目 double sigma0; // 验前单位权中误差 std::vector<CElvDif> _edVec; // 观测值数组 std::vector<CLevelPoint> _lpVec; // 高程值数组 public: // 构造函数 CElevationNet() : numElvDif(0), numPoints(0), numKnPoint(0), sigma0(0.0) {} // 读取数据文件 bool readDataFile(const std::string& filename) { std::ifstream file(filename); if (!file.is_open()) { std::cout << "Failed to open file: " << filename << std::endl; return false; } file >> numPoints >> numKnPoint >> numElvDif >> sigma0; // 读取已知点的信息 for (int i = 0; i < numKnPoint; i++) { long index; double eleValue; file >> index >> eleValue; _lpVec.push_back(CLevelPoint(index, eleValue, true)); } // 读取未知点的信息 for (int i = 0; i < numPoints - numKnPoint; i++) { long index; double eleValue; file >> index >> eleValue; _lpVec.push_back(CLevelPoint(index, eleValue, false)); } // 读取观测高差的信息 for (int i = 0; i < numElvDif; i++) { double value, weight; long startPoint, endPoint; file >> value >> weight >> startPoint >> endPoint; _edVec.push_back(CElvDif(value, weight, startPoint, endPoint)); } file.close(); return true; } // 计算未知点的近似高程 void computeApproximateElevation() { // 计算未知点的近似高程 std::vector<double> approxEle(numPoints - numKnPoint, 0.0); for (int i = numKnPoint; i < numPoints; i++) { double sum = 0.0; int count = 0; for (const auto& elvDif : _edVec) { long startPoint = elvDif.getStartPoint(); long endPoint = elvDif.getEndPoint(); double value = elvDif.getValue(); if ((startPoint == i + 1 && _lpVec[endPoint - 1].isKnown()) || (endPoint == i + 1 && _lpVec[startPoint - 1].isKnown())) { sum += value; count++; } } if (count > 0) { approxEle[i - numKnPoint] = sum / count; } } // 更新未知点的高程值 for (int i = numKnPoint; i < numPoints; i++) { _lpVec[i].setEleValue(approxEle[i - numKnPoint]); } } // 水准平差计算 void elevationAdjustment() { // 构建法方程系数矩阵A和常数项b std::vector<std::vector<double>> A(numElvDif + numKnPoint, std::vector<double>(numPoints - numKnPoint, 0.0)); std::vector<double> b(numElvDif + numKnPoint, 0.0); // 构建误差方程 int row = 0; for (const auto& elvDif : _edVec) { long startPoint = elvDif.getStartPoint(); long endPoint = elvDif.getEndPoint(); double weight = elvDif.getWeight(); double value = elvDif.getValue(); if (_lpVec[startPoint - 1].isKnown() && _lpVec[endPoint - 1].isKnown()) { // 已知-已知高差观测 double eleStart = _lpVec[startPoint - 1].getEleValue(); double eleEnd = _lpVec[endPoint - 1].getEleValue(); double residual = eleStart - eleEnd + value; b[row] = residual * weight; } else { // 未知-已知高差观测 if (_lpVec[startPoint - 1].isKnown()) { // 起点为已知点 A[row][startPoint - numKnPoint - 1] = 1.0; b[row] = _lpVec[startPoint - 1].getEleValue() + value; } else if (_lpVec[endPoint - 1].isKnown()) { // 终点为已知点 A[row][endPoint - numKnPoint - 1] = -1.0; b[row] = _lpVec[endPoint - 1].getEleValue() - value; } } row++; } // 构建法方程和常数项 for (int i = 0; i < numKnPoint; i++) { A[row][i] = 1.0; b[row] = _lpVec[i].getEleValue(); row++; } // 解算法方程 std::vector<double> x(numPoints - numKnPoint, 0.0); gaussElimination(A, b, x); // 更新未知点的高程值 for (int i = numKnPoint; i < numPoints; i++) { _lpVec[i].setEleValue(x[i - numKnPoint]); } } // 高斯消元法解方程 void gaussElimination(const std::vector<std::vector<double>>& A, const std::vector<double>& b, std::vector<double>& x) { int n = A.size(); std::vector<std::vector<double>> augmentedMatrix(n, std::vector<double>(n + 1, 0.0)); // 构建增广矩阵 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { augmentedMatrix[i][j] = A[i][j]; } augmentedMatrix[i][n] = b[i]; } // 高斯消元法求解 for (int i = 0; i < n - 1; i++) { // 首元素非零处理 if (augmentedMatrix[i][i] == 0) { int j = i + 1; while (j < n && augmentedMatrix[j][i] == 0) { j++; } if (j == n) { std::cout << "Error: Singular matrix!" << std::endl; return; } std::swap(augmentedMatrix[i], augmentedMatrix[j]); } for (int j = i + 1; j < n; j++) { double factor = augmentedMatrix[j][i] / augmentedMatrix[i][i]; for (int k = i; k <= n; k++) { augmentedMatrix[j][k] -= factor * augmentedMatrix[i][k]; } } } // 回代求解 for (int i = n - 1; i >= 0; i--) { x[i] = augmentedMatrix[i][n] / augmentedMatrix[i][i]; for (int j = i - 1; j >= 0; j--) { augmentedMatrix[j][n] -= augmentedMatrix[j][i] * x[i]; } } } // 输出结果 void printResults() const { std::cout << "Elevation Adjustment Results:" << std::endl; // 输出已知点的高程值 std::cout << "Known Points: " << std::endl; for (const auto& point : _lpVec) { if (point.isKnown()) { std::cout << "Point " << point.getIndex() << ": " << point.getEleValue() << std::endl; } } // 输出未知点的高程值 std::cout << "Unknown Points: " << std::endl; for (const auto& point : _lpVec) { if (!point.isKnown()) { std::cout << "Point " << point.getIndex() << ": " << point.getEleValue() << std::endl; } } // 计算未知点高程值的精度估计 double sigma_a = sqrt(sigma0 * sigma0 / (numElvDif - numPoints + numKnPoint)); std::cout << "Standard Deviation: " << sigma_a << std::endl; } }; int main() { CElevationNet elevationNet; // 读取数据文件 if (!elevationNet.readDataFile("data.txt")) { return 0; } // 计算未知点的近似高程 elevationNet.computeApproximateElevation(); // 进行水准平差计算 elevationNet.elevationAdjustment(); // 输出结果 elevationNet.printResults(); return 0; } ``` 请将上述代码保存为一个名为 `elevation_adjustment.cpp` 的文件,并将数据文件命名为 `data.txt` 并放在同一目录下。然后编译并运行该程序,即可得到水准间接平差的结果。
阅读全文

相关推荐

最新推荐

recommend-type

mysql执行sql文件报错Error: Unknown storage engine‘InnoDB’的解决方法

在MySQL数据库中,InnoDB是一个重要的存储引擎,它支持事务处理、行级锁定以及外键约束,常用于处理高并发和大数据量的应用场景。然而,当你尝试执行一个依赖于InnoDB存储引擎的SQL文件时,如果系统报出“Error: ...
recommend-type

arcgis+engin+c#开发教程

在本教程中,我们将深入探讨如何使用 ArcGIS Engine 和 C# 进行GIS应用程序的开发。ArcGIS Engine 是 Esri 公司提供的一个强大的开发工具包,它允许开发者构建定制的GIS应用程序,集成地理信息处理功能。本教程涵盖...
recommend-type

一种改进的自适应短时傅里叶变方法-基于梯度下降 算法运行环境为Jupyter Notebook,执行一种改进的自适应短时傅里叶变方法-基于梯度下降,附带参考 算法可迁移至金融时间序列,地震 微震信号

一种改进的自适应短时傅里叶变方法-基于梯度下降 算法运行环境为Jupyter Notebook,执行一种改进的自适应短时傅里叶变方法-基于梯度下降,附带参考。 算法可迁移至金融时间序列,地震 微震信号,机械振动信号,声发射信号,电压 电流信号,语音信号,声信号,生理信号(ECG,EEG,EMG)等信号。 sr = 1e4 t = torch.arange(0, 2.5, 1 sr) f = torch.sin(2*pi*t) * 1e2 + 1e2 * torch.ones_like(t) + 5e1 * t x = (torch.sin(torch.cumsum(f, dim=0) 2e2) + 0.1 *torch.randn(t.shape))[None, :] x += torch.sin(torch.cumsum(1e2*5 * torch.ones_like(t), dim=0) 2e2) x = x.to(device) print(x.shape) plt.plot(f)
recommend-type

一个Java GUI 图书借阅系统源码

源码 一个Java GUI 图书借阅系统源码. 一个Java GUI 图书借阅系统源码.
recommend-type

螺旋藻过滤机sw21可编辑全套技术资料100%好用.zip

螺旋藻过滤机sw21可编辑全套技术资料100%好用.zip
recommend-type

降低成本的oracle11g内网安装依赖-pdksh-5.2.14-1.i386.rpm下载

资源摘要信息: "Oracle数据库系统作为广泛使用的商业数据库管理系统,其安装过程较为复杂,涉及到多个预安装依赖包的配置。本资源提供了Oracle 11g数据库内网安装所必需的预安装依赖包——pdksh-5.2.14-1.i386.rpm,这是一种基于UNIX系统使用的命令行解释器,即Public Domain Korn Shell。对于Oracle数据库的安装,pdksh是必须的预安装组件,其作用是为Oracle安装脚本提供命令解释的环境。" Oracle数据库的安装与配置是一个复杂的过程,需要诸多组件的协同工作。在Linux环境下,尤其在内网环境中安装Oracle数据库时,可能会因为缺少某些关键的依赖包而导致安装失败。pdksh是一个自由软件版本的Korn Shell,它基于Bourne Shell,同时引入了C Shell的一些特性。由于Oracle数据库对于Shell脚本的兼容性和可靠性有较高要求,因此pdksh便成为了Oracle安装过程中不可或缺的一部分。 在进行Oracle 11g的安装时,如果没有安装pdksh,安装程序可能会报错或者无法继续。因此,确保pdksh已经被正确安装在系统上是安装Oracle的第一步。根据描述,这个特定的pdksh版本——5.2.14,是一个32位(i386架构)的rpm包,适用于基于Red Hat的Linux发行版,如CentOS、RHEL等。 运维人员在进行Oracle数据库安装时,通常需要下载并安装多个依赖包。在描述中提到,下载此依赖包的价格已被“打下来”,暗示了市场上其他来源可能提供的费用较高,这可能是因为Oracle数据库的软件和依赖包通常价格不菲。为了降低IT成本,本文档提供了实际可行的、经过测试确认可用的资源下载途径。 需要注意的是,仅仅拥有pdksh-5.2.14-1.i386.rpm文件是不够的,还要确保系统中已经安装了正确的依赖包管理工具,并且系统的软件仓库配置正确,以便于安装rpm包。在安装rpm包时,通常需要管理员权限,因此可能需要使用sudo或以root用户身份来执行安装命令。 除了pdksh之外,Oracle 11g安装可能还需要其他依赖,如系统库文件、开发工具等。如果有其他依赖需求,可以参考描述中提供的信息,点击相关者的头像,访问其提供的其他资源列表,以找到所需的相关依赖包。 总结来说,pdksh-5.2.14-1.i386.rpm包是Oracle 11g数据库内网安装过程中的关键依赖之一,它的存在对于运行Oracle安装脚本是必不可少的。当运维人员面对Oracle数据库安装时,应当检查并确保所有必需的依赖组件都已准备就绪,而本文档提供的资源将有助于降低安装成本,并确保安装过程的顺利进行。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

云计算术语全面掌握:从1+X样卷A卷中提炼精华

![云计算术语全面掌握:从1+X样卷A卷中提炼精华](https://ask.qcloudimg.com/http-save/yehe-1475574/696453895d391e6b0f0e27455ef79c8b.jpeg) # 摘要 本文全面解析了云计算的基础概念,并深入理解了云计算服务模型,包括IaaS、PaaS和SaaS的区别及其应用。文章详细探讨了云计算部署模型,包括公有云、私有云及混合云的架构优势和选择策略。同时,本文也实践应用了云计算的关键技术,如虚拟化、容器技术以及云安全策略。此外,文章探讨了云服务管理与监控的工具、最佳实践、性能监控以及合规性和可持续发展问题。最后,本文通
recommend-type

. 索读取⼀幅图像,让该图像拼接⾃身图像,分别⽤⽔ 平和垂直 2 种。要求运⾏结果弹窗以⾃⼰的名字全拼命名。

在Python中,我们可以使用PIL(Pillow)库来处理图像并实现您所描述的功能。首先,你需要安装PIL库,如果还没有安装,可以使用pip install pillow命令。以下是简单的步骤来实现这个功能: 1. 打开图像文件: ```python from PIL import Image def open_image_and_display(image_path): img = Image.open(image_path) ``` 2. 创建一个新的空白图像,用于存放拼接后的图像: ```python def create_concat_image(img, directi
recommend-type

Java基础实验教程Lab1解析

资源摘要信息:"Java Lab1实践教程" 本次提供的资源是一个名为"Lab1"的Java实验室项目,旨在帮助学习者通过实践来加深对Java编程语言的理解。从给定的文件信息来看,该项目的名称为"Lab1",它的描述同样是"Lab1",这表明这是一个基础的实验室练习,可能是用于介绍Java语言或设置一个用于后续实践的开发环境。文件列表中的"Lab1-master"表明这是一个主版本的压缩包,包含了多个文件和可能的子目录结构,用于确保完整性和便于版本控制。 ### Java知识点详细说明 #### 1. Java语言概述 Java是一种高级的、面向对象的编程语言,被广泛用于企业级应用开发。Java具有跨平台的特性,即“一次编写,到处运行”,这意味着Java程序可以在支持Java虚拟机(JVM)的任何操作系统上执行。 #### 2. Java开发环境搭建 对于一个Java实验室项目,首先需要了解如何搭建Java开发环境。通常包括以下步骤: - 安装Java开发工具包(JDK)。 - 配置环境变量(JAVA_HOME, PATH)以确保可以在命令行中使用javac和java命令。 - 使用集成开发环境(IDE),如IntelliJ IDEA, Eclipse或NetBeans,这些工具可以简化编码、调试和项目管理过程。 #### 3. Java基础语法 在Lab1中,学习者可能需要掌握一些Java的基础语法,例如: - 数据类型(基本类型和引用类型)。 - 变量的声明和初始化。 - 控制流语句,包括if-else, for, while和switch-case。 - 方法的定义和调用。 - 数组的使用。 #### 4. 面向对象编程概念 Java是一种面向对象的编程语言,Lab1项目可能会涉及到面向对象编程的基础概念,包括: - 类(Class)和对象(Object)的定义。 - 封装、继承和多态性的实现。 - 构造方法(Constructor)的作用和使用。 - 访问修饰符(如private, public)的使用,以及它们对类成员访问控制的影响。 #### 5. Java标准库使用 Java拥有一个庞大的标准库,Lab1可能会教授学习者如何使用其中的一些基础类和接口,例如: - 常用的java.lang包下的类,如String, Math等。 - 集合框架(Collections Framework),例如List, Set, Map等接口和实现类。 - 异常处理机制,包括try-catch块和异常类层次结构。 #### 6. 实验室项目实践 实践是学习编程最有效的方式之一。Lab1项目可能包含以下类型的实际练习: - 创建一个简单的Java程序,比如一个控制台计算器。 - 实现基本的数据结构和算法,如链表、排序和搜索。 - 解决特定的问题,比如输入处理和输出格式化。 #### 7. 项目组织和版本控制 "Lab1-master"文件名暗示该项目可能采用Git作为版本控制系统。在项目实践中,学习者可能需要了解: - 如何使用Git命令进行版本控制。 - 分支(Branch)的概念和合并(Merge)的策略。 - 创建和管理Pull Request来协作和审查代码。 #### 8. 代码规范和文档 良好的代码规范和文档对于保持代码的可读性和可维护性至关重要。Lab1项目可能会强调: - 遵循Java编码标准,例如命名约定、注释习惯。 - 编写文档注释(Javadoc),以便自动生成API文档。 通过Lab1项目的实践和指导,学习者能够逐步掌握Java编程语言的核心知识,并为后续更深入的学习和项目开发打下坚实的基础。