img1 = np.array(img) img2 = torchvision.transforms.ToTensor()(img1) apply(img2, torchvision.transforms.RandomErasing(p=0.9, scale=(0.02, 0.33), ratio=(0.3, 3.3), value='random'),"zg10_") 如何使得img的属性不变

时间: 2024-02-19 19:57:56 浏览: 27
由于 `img2` 是通过 `ToTensor()` 转换得到的,因此它已经不再是 `PIL.Image` 类型的数据,而是 `torch.Tensor` 类型的数据。如果要保留原始图像 `img` 的属性,可以在 `apply` 函数内部对 `img` 进行备份,并在函数返回时将备份更新为变换后的图像,如下所示: ``` def apply(img, transform, prefix): img_copy = img.copy() # 备份原始图像 img_tensor = torchvision.transforms.ToTensor()(img_copy) # 将图像转换为 Tensor transformed_tensor = transform(img_tensor) # 对 Tensor 进行变换 transformed_img = torchvision.transforms.ToPILImage()(transformed_tensor) # 将 Tensor 转换为 PIL.Image # 对变换后的图像进行处理,如保存、显示等 # ... img_copy = transformed_img.copy() # 更新备份为变换后的图像 return transformed_img ``` 这样就能保留原始图像的属性,并且在变换后得到变换后的图像。
相关问题

img1 = np.array(img) img2 = torchvision.transforms.ToTensor()(img1)如何使得img的值与属性不变

可以通过使用`torchvision.transforms.Normalize`函数来将图像进行规范化,使得图像的属性不变。 具体操作步骤如下: 1. 定义一个`transforms.Compose`对象,将`ToTensor()`和`Normalize()`函数添加到该对象中。 ``` transforms = torchvision.transforms.Compose([torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) ``` 2. 使用定义好的`transforms`对象来对图像进行处理。 ``` img1 = np.array(img) img2 = transforms(img1) ``` 这样处理后,图像的值和属性都不会发生改变。其中,`mean`和`std`是在ImageNet数据集上计算得到的均值和标准差。如果你的图像不是基于ImageNet数据集训练的,可以使用其他数据集的均值和标准差来进行规范化。

dataset_transform = torchvision.transforms.Compose()

`dataset_transform = torchvision.transforms.Compose()`是一个用于定义数据集转换的函数。它可以将多个数据集转换操作组合在一起,以便在加载数据集时应用这些转换操作。 以下是一个示例,展示如何使用`torchvision.transforms.Compose()`来定义数据集转换: ```python import torchvision.transforms as transforms # 定义数据集转换操作 transform = transforms.Compose([ transforms.RandomCrop(400), transforms.ToTensor() ]) # 在加载数据集时应用转换操作 dataset_transform = torchvision.datasets.FashionMNIST( root='./data', train=True, transform=transform, download=True ) ``` 在上述示例中,`transforms.RandomCrop(400)`表示对图像进行随机裁剪,将其大小调整为400x400像素。`transforms.ToTensor()`表示将图像转换为张量格式。

相关推荐

rom skimage.segmentation import slic, mark_boundaries import torchvision.transforms as transforms import numpy as np from PIL import Image import matplotlib.pyplot as plt # 加载图像 image = Image.open('3.jpg') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 将 PyTorch 张量转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 使用 SLIC 算法生成超像素标记图 segments = slic(img_np, n_segments=60, compactness=10) # 可视化超像素索引映射 plt.imshow(segments, cmap='gray') plt.show() # 将超像素索引映射可视化 segment_img = mark_boundaries(img_np, segments) # 将 Numpy 数组转换为 PIL 图像 segment_img = Image.fromarray((segment_img * 255).astype(np.uint8)) # 保存超像素索引映射可视化 segment_img.save('segment_map.jpg') 将上述代码中引入超像素池化代码:import cv2 import numpy as np # 读取图像 img = cv2.imread('3.jpg') # 定义超像素分割器 num_segments = 60 # 超像素数目 slic = cv2.ximgproc.createSuperpixelSLIC(img, cv2.ximgproc.SLICO, num_segments) # 进行超像素分割 slic.iterate(10) # 获取超像素标签和数量 labels = slic.getLabels() num_label = slic.getNumberOfSuperpixels() # 对每个超像素进行池化操作,这里使用平均值池化 pooled = [] for i in range(num_label): mask = labels == i region = img[mask] pooled.append(region.mean(axis=0)) # 将池化后的特征图可视化 pooled = np.array(pooled, dtype=np.uint8) pooled_features = pooled.reshape(-1) pooled_img = cv2.resize(pooled_features, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_NEAREST) print(pooled_img.shape) cv2.imshow('Pooled Image', pooled_img) cv2.waitKey(0),并显示超像素池化后的特征图

import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms import skimage.segmentation as seg import numpy as np # 超参数 from PIL import Image num_superpixels = 1000 compactness = 10 sigma = 1 # 定义模型 class SuperpixelSegmentation(nn.Module): def init(self): super(SuperpixelSegmentation, self).init() self.convs = nn.Sequential( nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(64, num_superpixels, kernel_size=1, stride=1) ) def forward(self, x): x = self.convs(x) return x # 加载图像 imgA = Image.open('1.png').convert('RGB') imgB = Image.open('2.jpg').convert('RGB') # 超像素分割 imgA_np = np.array(imgA) segments = seg.slic(imgA_np, n_segments=num_superpixels, compactness=compactness, sigma=sigma) segments = torch.from_numpy(segments).unsqueeze(0).unsqueeze(0).float() segments = F.interpolate(segments, size=(imgA.height, imgA.width), mode='nearest').long() # 应用超像素块范围到图像B imgB_np = np.array(imgB) for i in range(num_superpixels): mask = (segments == i) imgB_np[mask.expand(3, -1, -1)] = np.mean(imgB_np[mask.expand(3, -1, -1)], axis=1, keepdims=True) # 显示超像素分割图像 imgA_segments = np.zeros_like(imgA_np) for i in range(num_superpixels): mask = (segments == i) imgA_segments[mask.expand(3, -1, -1)] = np.random.randint(0, 255, size=(3,)) imgA_segments = Image.fromarray(imgA_segments.astype(np.uint8)) imgB_segments = Image.fromarray(imgB_np) # 显示图像 transforms.ToPILImage()(imgA).show() transforms.ToPILImage()(imgB).show() imgA_segments.show() imgB_segments.show()上述代码出现错误:RuntimeError: expand(CPUBoolType{[1, 1, 512, 512]}, size=[3, -1, -1]): the number of sizes provided (3) must be greater or equal to the number of dimensions in the tensor (4)

from skimage.segmentation import slic, mark_boundaries import torchvision.transforms as transforms import numpy as np from PIL import Image import matplotlib.pyplot as plt # 加载图像 image = Image.open('img.png') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 将 PyTorch 张量转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 使用 SLIC 算法生成超像素标记图 segments = slic(img_np, n_segments=100, compactness=10) # 可视化超像素标记图 segment_img = mark_boundaries(img_np, segments) # 将 Numpy 数组转换为 PIL 图像 segment_img = Image.fromarray((segment_img * 255).astype(np.uint8)) # 保存超像素标记图 segment_img.save('segments.jpg') n_segments = np.max(segments) + 1 # 初始化超像素块的区域 segment_regions = np.zeros((n_segments, img_np.shape[0], img_np.shape[1])) # 遍历每个超像素块 for i in range(n_segments): # 获取当前超像素块的掩码 mask = (segments == i) # 将当前超像素块的掩码赋值给超像素块的区域 segment_regions[i][mask] = 1 # 保存超像素块的区域 np.save('segment_regions.npy', segment_regions) # 加载超像素块的区域 segment_regions = np.load('segment_regions.npy') # 取出第一个超像素块的区域 segment_region = segment_regions[37] segment_region = (segment_region * 255).astype(np.uint8) # 显示超像素块的区域 plt.imshow(segment_region, cmap='gray') plt.show(),将上述代码修改成显示超像素索引映射可视化

最新推荐

recommend-type

Java_Spring Boot 3主分支2其他分支和Spring Cloud微服务的分布式配置演示Spring Cl.zip

Java_Spring Boot 3主分支2其他分支和Spring Cloud微服务的分布式配置演示Spring Cl
recommend-type

ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计

ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)
recommend-type

基于MATLAB实现的V两幅图像中有重叠部分,通过数字图像相关算法可以找到两幅图像相同的点+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的V两幅图像中有重叠部分,通过数字图像相关算法可以找到两幅图像相同的点+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

全球国家列表和国家代码最详细版本

全球国家列表和国家代码最全最详细版本,国家country,code
recommend-type

grpcio-1.47.0-cp37-cp37m-manylinux_2_17_aarch64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。