t_embedding = embedding_layer(t)代码的作用
时间: 2024-03-04 08:53:42 浏览: 163
这段代码的作用是对当前时间步(step)的输入 `t` 进行嵌入(embedding)操作,得到对应的向量表示 `t_embedding`。具体来说,这个代码使用了之前定义过的嵌入层(embedding layer)`embedding_layer`,将当前时间步的输入 `t` 作为参数传递给该层,从而得到对应的向量表示 `t_embedding`。这个向量表示可以看作是对输入单词的词向量表示,它将被用作后续模型计算的输入。
相关问题
def forward(self,x,t): for idx,embedding_layer in enumerate(self.step_embeddings): t_embedding = embedding_layer(t) x = self.linears[2*idx](x) x += t_embedding x = self.linears[2*idx+1](x) x = self.linears[-1](x) return x代码分析
这段代码实现了一个神经网络的前向传播过程。该神经网络包含多个嵌入层和线性层,其中每个嵌入层对应一个时间步骤,每个线性层对应一个嵌入层和一个时间步骤的组合。
在前向传播过程中,输入数据x和时间步骤t被传入网络中。对于每个时间步骤,对应的嵌入层将时间步骤t进行嵌入,得到t_embedding。然后,输入数据x被传入对应的线性层,经过线性变换后与t_embedding进行加和,并再次经过线性变换得到输出。最终,所有时间步骤的输出被传入最后一个线性层,得到最终的输出结果。
需要注意的是,该神经网络的输入数据x和时间步骤t的形状需要与嵌入层和线性层的参数匹配。同时,该神经网络的输出结果的形状也需要与任务的要求匹配。
class DeepNeuralNet(torch.nn.Module): def __init__(self, n_users, n_items, n_factors=32, hidden_layers=[64,32]): super(DeepNeuralNet, self).__init__() # User and item embeddings self.user_embedding = torch.nn.Embedding(num_embeddings=n_users, embedding_dim=n_factors) self.item_embedding = torch.nn.Embedding(num_embeddings=n_items, embedding_dim=n_factors) # Fully connected hidden layers self.fc_layers = torch.nn.ModuleList([]) if len(hidden_layers) > 0: self.fc_layers.append(torch.nn.Linear(in_features=n_factors*2, out_features=hidden_layers[0])) for i in range(1,len(hidden_layers)): self.fc_layers.append(torch.nn.Linear(in_features=hidden_layers[i-1], out_features=hidden_layers[i])) self.output_layer = torch.nn.Linear(in_features=hidden_layers[-1] if len(hidden_layers)> 0 else n_factors*2, out_features=1) self.dropout = torch.nn.Dropout(0.2) self.sigmoid = torch.nn.Sigmoid()
这段代码定义了一个深度神经网络模型,用于推荐系统中的协同过滤任务。具体来说,该模型使用用户和物品的嵌入向量作为输入,通过多层全连接层将这些向量映射为一个标量评分,表示用户对该物品的喜爱程度。模型结构包括:
1. 两个嵌入层,分别用于用户和物品的嵌入向量的学习。
2. 多个全连接层,用于将嵌入向量进行组合和转换,以得到更加高级的特征。其中,输入层的维度为`n_factors*2`,即用户和物品的嵌入向量拼接后的维度;输出层的维度为1,表示最终的评分。
3. Dropout层,用于防止过拟合。
4. Sigmoid激活函数,用于将输出值映射到0-1之间的范围,表示用户对该物品的喜爱程度。
该模型的参数包括用户和物品的嵌入向量以及各个全连接层的权重和偏置项。在训练过程中,通过最小化预测评分与真实评分之间的差距,来更新模型参数,以提高模型的准确性。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)