解释一下代码:torch.Tensor(np.random.normal(0,1,list(true_y.size())))
时间: 2024-06-06 11:11:49 浏览: 146
这行代码的作用是使用numpy库生成一个符合正态分布的随机数数组,并将其转化为PyTorch张量。其中,np.random.normal(0,1,list(true_y.size()))中的0代表分布的均值为0,1代表分布的标准差为1,list(true_y.size())则是生成随机数数组的形状。最终,此行代码返回一个PyTorch张量(tensor)。
相关问题
解释一下代码:torch.max(abs(true_y),0)[0]*args.rand_coef*torch.Tensor(np.random.normal(0,1,list(true_y.size())))
这段代码使用了PyTorch的max函数和abs函数来计算true_y中的最大值。然后,它将该最大值乘以rand_coef,rand_coef是一个参数,用于控制该最大值对噪声的影响。接下来,它使用NumPy中的random.normal函数来生成一个具有相同形状的随机张量,该张量的每个元素都是从均值为0、标准差为1的正态分布中采样而来的。最后,将这个随机张量与true_y中的最大值相乘,以产生噪声。
给出一个cnn进行信道估计训练和测试的代码,用pytorch写,程序内包括snr_num,per_snr_num
好的,下面是一个简单的CNN进行信道估计的训练和测试代码,使用PyTorch实现:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import numpy as np
from sklearn.metrics import confusion_matrix, accuracy_score
# 定义CNN模型
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv1d(in_channels=2, out_channels=64, kernel_size=3, padding=1)
self.conv2 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=3, padding=1)
self.conv3 = nn.Conv1d(in_channels=128, out_channels=256, kernel_size=3, padding=1)
self.fc1 = nn.Linear(in_features=256*8, out_features=512)
self.fc2 = nn.Linear(in_features=512, out_features=32)
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu(x)
x = nn.functional.max_pool1d(x, kernel_size=2)
x = self.conv2(x)
x = nn.functional.relu(x)
x = nn.functional.max_pool1d(x, kernel_size=2)
x = self.conv3(x)
x = nn.functional.relu(x)
x = nn.functional.max_pool1d(x, kernel_size=2)
x = x.view(-1, 256*8)
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
return x
# 定义数据集类
class ChannelDataset(data.Dataset):
def __init__(self, snr_num, per_snr_num):
self.snr_num = snr_num
self.per_snr_num = per_snr_num
self.data = []
self.labels = []
for i in range(snr_num):
for j in range(per_snr_num):
h_real = np.random.normal(0, 1, [2, 1024])
h_imag = np.random.normal(0, 1, [2, 1024])
y_real = np.random.normal(0, 1, [2, 1024])
y_imag = np.random.normal(0, 1, [2, 1024])
y = np.concatenate((y_real, y_imag), axis=0)
h = np.concatenate((h_real, h_imag), axis=0)
input_data = np.concatenate((y, h), axis=1)
label = i
self.data.append(input_data)
self.labels.append(label)
def __getitem__(self, index):
input_data = self.data[index]
label = self.labels[index]
return torch.from_numpy(input_data).float(), torch.tensor(label).long()
def __len__(self):
return len(self.data)
# 定义训练函数
def train(model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = nn.functional.cross_entropy(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
# 定义测试函数
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
y_true = []
y_pred = []
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += nn.functional.cross_entropy(output, target, reduction='sum').item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
y_true += target.tolist()
y_pred += pred.tolist()
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)'.format(
test_loss, correct, len(test_loader.dataset), accuracy))
print('Confusion Matrix:\n', confusion_matrix(y_true, y_pred))
print('Accuracy Score:', accuracy_score(y_true, y_pred))
# 设置超参数
batch_size = 64
epochs = 10
lr = 0.001
momentum = 0.9
no_cuda = False
# 设置随机种子
torch.manual_seed(1)
np.random.seed(1)
# 判断是否使用GPU
use_cuda = not no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
# 加载数据集
train_dataset = ChannelDataset(snr_num=10, per_snr_num=500)
test_dataset = ChannelDataset(snr_num=10, per_snr_num=100)
train_loader = data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
# 初始化模型和优化器
model = CNN().to(device)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
# 训练和测试模型
for epoch in range(1, epochs + 1):
train(model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
```
这个代码中,我们定义了一个简单的CNN模型来进行信道估计的训练和测试,数据集类ChannelDataset用于生成随机的信道和接收信号,train函数用于训练模型,test函数用于测试模型的准确率和混淆矩阵。在这个代码中,我们使用了PyTorch的自动求导和优化器来进行训练,同时使用了sklearn.metrics包中的函数来计算混淆矩阵和准确率。
阅读全文
相关推荐
















