new_rows = new_rows.append(new_row, ignore_index=True)此语句有别的表达方式吗?
时间: 2023-11-26 14:04:12 浏览: 83
是的,可以使用 `pandas.concat` 函数来替代 `DataFrame.append` 方法,以达到相同的效果。`pandas.concat` 函数用于在两个或多个 DataFrame 之间进行连接。
要使用 `pandas.concat` 函数替代 `new_rows.append(new_row, ignore_index=True)`,可以按照以下方式进行修改:
```python
new_rows = pd.concat([new_rows, pd.DataFrame([new_row], columns=new_rows.columns)], ignore_index=True)
```
这里使用 `pd.DataFrame([new_row], columns=new_rows.columns)` 将 `new_row` 转换为新的 DataFrame,并指定列名与 `new_rows` DataFrame 中的列名相同。然后,将两个 DataFrame 使用 `pd.concat` 进行连接,并使用 `ignore_index=True` 参数来重新生成索引。
这种方式可以达到与 `append` 方法相同的效果,同时避免了使用被弃用的 `append` 方法。
希望这个解答能够满足你的需求!如果你还有其他问题,请随时提问。
相关问题
# 循环处理每一行 for i, row in df[mask].iterrows(): # 计算前后平均值 average_values = {} for column in df.columns: if column in ['车速']: average_values[column] = (row[column] + df.loc[i+1, column]) / 2 # 创建新行并插入数据 new_row = {'数据采集时间': row['数据采集时间'] + pd.Timedelta(seconds=15), '时间差': 15} # 设置新行的时间差为15秒 new_row.update(average_values) # 添加到新行DataFrame中 new_rows = new_rows.append(new_row, ignore_index=True)这段代码是否会无限循环
这段代码不会无限循环。它是一个基于条件筛选的循环,遍历满足条件的每一行数据进行处理。
循环的条件是 `df[mask]`,其中 `mask` 是一个布尔条件,用于筛选出满足条件的行。只有满足条件的行才会进入循环进行处理。
在循环中,每一行的数据被用于计算前后平均值,并创建一个新的行数据 `new_row`。然后将新行添加到 `new_rows` DataFrame 中。
这个过程会在满足条件的行上进行迭代,直到遍历完所有满足条件的行为止。循环不会无限进行下去,它将在处理完所有满足条件的行后结束。
希望这个解答对你有帮助!如果你还有其他问题,请随时提问。
import os import pandas as pd from openpyxl import load_workbook from openpyxl.utils.dataframe import dataframe_to_rows # 指定要合并的文件夹路径 folder_path = r"E:\aaaa\aaaa" fields_to_write = ['aaaa', 'aaaa'] # 获取文件夹中所有的 xlsx 文件路径 xlsx_files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith('.xlsx')] # 创建一个空的 DataFrame 用于存储合并后的数据 merged_data = pd.DataFrame() # 循环读取每个 xlsx 文件,将它们合并到 merged_data 中 for xlsx_file in xlsx_files: # 使用 pandas 读取 xlsx 文件,并清理无效字符引用 wb = load_workbook(filename=xlsx_file, read_only=False, data_only=True, keep_vba=False, keep_links=False, keep_protection=False) for sheet_name in wb.sheetnames: ws = wb[sheet_name] for row in ws.rows: for cell in row: cell.value = cell.value if cell.value is None else str(cell.value).strip() df = pd.read_excel(wb) # 将读取到的数据追加到 merged_data 中 merged_data = merged_data.append(df, ignore_index=True) # 在 merged_data 中添加新的一列数据 merged_data['new_column'] = 'new_value' # 创建一个新的工作簿 wb_new = load_workbook(write_only=True) ws_new = wb_new.create_sheet('merged_data') # 将 DataFrame 中的数据逐行写入到新的工作簿中 rows = dataframe_to_rows(merged_data[fields_to_write + ['new_column']], index=False) for row in rows: ws_new.append(row) # 保存合并后的数据到新的 xlsx 文件中 wb_new.save(r"E:\aaaa\aaaa\merged_file.xlsx")使用此代码会出现ValueError: Invalid file path or buffer object type: <class 'openpyxl.workbook.workbook.Workbook'>的报错,请优化下
根据报错信息,我猜测可能是在 `pd.read_excel(wb)` 这一行代码中出现了问题。`pd.read_excel()` 方法中的参数应该是文件路径或文件对象,而不是工作簿对象。因此,你可以先将工作簿保存为文件,然后再使用 `pd.read_excel()` 方法读取文件中的内容。修改后的代码如下:
```python
import os
import pandas as pd
from openpyxl import load_workbook
from openpyxl.utils.dataframe import dataframe_to_rows
# 指定要合并的文件夹路径
folder_path = r"E:\aaaa\aaaa"
fields_to_write = ['aaaa', 'aaaa']
# 获取文件夹中所有的 xlsx 文件路径
xlsx_files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith('.xlsx')]
# 创建一个空的 DataFrame 用于存储合并后的数据
merged_data = pd.DataFrame()
# 循环读取每个 xlsx 文件,将它们合并到 merged_data 中
for xlsx_file in xlsx_files:
# 使用 pandas 读取 xlsx 文件,并清理无效字符引用
wb = load_workbook(filename=xlsx_file, read_only=False, data_only=True, keep_vba=False, keep_links=False, keep_protection=False)
for sheet_name in wb.sheetnames:
ws = wb[sheet_name]
for row in ws.rows:
for cell in row:
cell.value = cell.value if cell.value is None else str(cell.value).strip()
# 将工作簿保存为临时文件
temp_file = f"{os.path.splitext(xlsx_file)[0]}_temp.xlsx"
wb.save(temp_file)
# 读取临时文件中的数据
df = pd.read_excel(temp_file)
# 删除临时文件
os.remove(temp_file)
# 将读取到的数据追加到 merged_data 中
merged_data = merged_data.append(df, ignore_index=True)
# 在 merged_data 中添加新的一列数据
merged_data['new_column'] = 'new_value'
# 创建一个新的工作簿
wb_new = load_workbook(write_only=True)
ws_new = wb_new.create_sheet('merged_data')
# 将 DataFrame 中的数据逐行写入到新的工作簿中
rows = dataframe_to_rows(merged_data[fields_to_write + ['new_column']], index=False)
for row in rows:
ws_new.append(row)
# 保存合并后的数据到新的 xlsx 文件中
wb_new.save(r"E:\aaaa\aaaa\merged_file.xlsx")
```
这样修改后,你应该就可以成功合并文件并保存为新的 xlsx 文件了。
阅读全文