import pandas as pd import datetime now = datetime.datetime.now().strftime('%Y%m%d') # 获取当前日期,格式为年月日 data = pd.read_excel(r'E:\每日数据\智能POS明细.xlsx',dtype={'商户编号':str,'终端编号':str}) rows = data.shape[0] # 获取行数 shape[1]获取列数 department_list = [] for i in range(rows): temp = data["省份"][i] if temp not in department_list: department_list.append(temp) # 将省份的分类存在一个列表中 for department in department_list: new_df = pd.DataFrame() for i in range(0, rows): if data["省份"][i] == department: new_df = pd.concat([new_df, data.iloc[[i], :]], axis=0, ignore_index=True) # 上面的循环效率太低了,这么做太蠢了,其实可以用pandas的条件筛选 new_df = data[data["省份"] == department] # 如果多条件筛选,new_df = data[(data["省份"] == department)&()&()] 括号里写条件用 & 连起来 new_df.to_excel(str(department) + "智能POS明细" + now + ".xlsx", sheet_name=department, index=False)

时间: 2024-04-26 10:26:56 浏览: 104
这段代码的功能是将一个包含省份信息的 Excel 表格按照省份分类,并将每个省份的数据保存到不同的 Excel 文件中。 代码中首先读取了一个名为 `智能POS明细.xlsx` 的 Excel 文件,并将其中的数据存储到一个名为 `data` 的 DataFrame 中。然后,使用 `shape` 方法获取了该 DataFrame 的行数和列数,并将省份信息存在一个名为 `department_list` 的列表中。 接下来,代码使用一个循环遍历了 `department_list` 中的每一个省份,并将该省份的数据保存到一个名为 `new_df` 的 DataFrame 中。具体实现方式是使用条件筛选,通过 `data["省份"] == department` 来筛选该省份的数据,并将结果存储在 `new_df` 中。最后,使用 `to_excel` 方法将 `new_df` 中的数据保存到一个名为 `省份智能POS明细YYYYMMDD.xlsx` 的 Excel 文件中。 需要注意的是,代码中的循环实现方式很低效,可以使用 Pandas 的条件筛选来替代。另外,代码中的路径需要根据实际情况进行修改。
相关问题

import pandas as pd # import datetime # now = datetime.datetime.now().strftime('%Y%m%d') # 获取当前日期,格式为年月日 data = pd.read_excel(r'E:\每日数据\MISPOS明细.xlsx',dtype={'商户编号':str,'终端编号':str, '处理情况': str}) rows = data.shape[0] # 获取行数 shape[1]获取列数 department_list = [] for i in range(rows): temp = data["省份"][i] if temp not in department_list: department_list.append(temp) # 将省份的分类存在一个列表中 for department in department_list: new_df = pd.DataFrame() for i in range(0, rows): if data["省份"][i] == department: new_df = pd.concat([new_df, data.iloc[[i], :]], axis=0, ignore_index=True) # 上面的循环效率太低了,这么做太蠢了,其实可以用pandas的条件筛选 new_df = data[(data["省份"] == department) & (data["处理情况"] == "未处理")] # 如果多条件筛选,new_df = data[(data["省份"] == department)&()&()] 括号里写条件用 & 连起来 new_df.to_excel(str(department) +"旧机具未处理明细" + ".xlsx", sheet_name=department, index=False)

这段代码使用了Python的pandas库来读取一个Excel文件,然后根据文件中的省份进行分类,将每个省份的数据保存到一个新的Excel文件中。具体来说,它首先创建了一个空列表`department_list`,用于存储所有不重复的省份名称。然后,它遍历数据中的每一行,将省份名称添加到`department_list`中。接下来,它遍历`department_list`中的每一个省份,使用pandas的条件筛选功能来选择该省份下未处理的数据,并将这些数据保存到一个新的Excel文件中。最后,它将新文件的名称命名为该省份名称加上一些额外的字符串。

import pandas as pdimport datetime now = datetime.datetime.now().strftime('%Y%m%d') # 获取当前日期,格式为年月日 data = pd.read_excel(r'E:\每日数据\MISPOS明细.xlsx',dtype={'商户编号':str,'终端编号':str, '处理情况': str}) rows = data.shape[0] # 获取行数 shape[1]获取列数 department_list = [] for i in range(rows): temp = data["省份"][i] if temp not in department_list: department_list.append(temp) # 将省份的分类存在一个列表中 for department in department_list: new_df = pd.DataFrame() for i in range(0, rows): if data["省份"][i] == department: new_df = pd.concat([new_df, data.iloc[[i], :]], axis=0, ignore_index=True) # 上面的循环效率太低了,这么做太蠢了,其实可以用pandas的条件筛选 new_df = data[(data["省份"] == department) & (data["处理情况"] == "未处理")] # 如果多条件筛选,new_df = data[(data["省份"] == department)&()&()] 括号里写条件用 & 连起来 new_df.to_excel(str(department) +"旧机具未处理明细" + ".xlsx", sheet_name=department, index=False)

这段代码的作用是读取一个名为'MISPOS明细.xlsx'的Excel文件,根据省份将数据分类,并将每个省份的未处理数据保存为一个新的Excel文件。具体流程如下: 1. 首先导入pandas和datetime模块,并使用datetime模块获取当前日期并将格式转化为年月日的形式。 2. 使用pandas的read_excel()函数读取名为'MISPOS明细.xlsx'的Excel文件,并指定'商户编号'、'终端编号'和'处理情况'列的数据类型为字符串。 3. 使用data.shape[0]获取数据的行数,再用一个循环将所有不同的省份存在一个列表中。 4. 对于每一个省份,使用data[(data["省份"] == department) & (data["处理情况"] == "未处理")]的条件筛选方式获取该省份的未处理数据,并将结果保存为一个新的Excel文件,文件名为该省份的名称加上'旧机具未处理明细'。 需要注意的是,代码中存在一些不必要的循环和拼接操作,可以使用pandas的更高效的操作来实现相同的功能。另外,该代码并没有处理异常情况,需要在实际使用中注意。
阅读全文

相关推荐

import pandas as pd import datetime import tkinter as tk# 获取当前日期,格式为年月日 now = datetime.datetime.now().strftime('%Y%m%d') # 读取Excel文件 data = pd.read_excel(r'E:\每日数据\智能POS明细.xlsx',dtype={'商户编号':str,'终端编号':str})# 获取省份列表 department_list = data['省份'].unique() # 事件处理程序,按省份提取数据 def extract_by_department(): # 用户输入省份名称 department_name = department_entry.get() # 按照省份拆分数据 if department_name in department_list: new_df = data[data['省份'] == department_name ] file_name = department_name + '智能POS明细' + now + '.xlsx' new_df.to_excel(file_name, index=False) result_label.config(text="数据提取成功!") else: result_label.config(text="无法找到该省份!")# 事件处理程序,全部提取数据 def extract_all(): # 循环按照省份拆分数据 for department in department_list: new_df = data[data['省份'] == department] file_name = department + '智能POS明细' + now + '.xlsx' new_df.to_excel(file_name, index=False) result_label.config(text="数据提取成功!")# 创建窗口 window = tk.Tk()window.title("智能POS明细数据提取")window.geometry("400x200")# 创建控件 department_label = tk.Label(window, text="省份名称:")department_entry = tk.Entry(window)extract_by_department_button = tk.Button(window, text="按省提取", command=extract_by_department)extract_all_button = tk.Button(window, text="全部提取", command=extract_all)result_label = tk.Label(window, text="")# 显示控件 department_label.pack()department_entry.pack()extract_by_department_button.pack()extract_all_button.pack()result_label.pack()# 运行窗口 window.mainloop()

import pandas as pd import datetime import tkinter as tk # 获取当前日期,格式为年月日 now = datetime.datetime.now().strftime('%Y%m%d') # 读取Excel文件 data = pd.read_excel(r'E:\每日数据\智能POS明细.xlsx',dtype={'商户编号':str,'终端编号':str}) # 获取省份列表 department_list = data['省份'].unique() # 事件处理程序,按省份提取数据 def extract_by_department(): # 用户输入省份名称 department_name = department_entry.get() # 按照省份拆分数据 if department_name in department_list: new_df = data[data['省份'] == department_name ] file_name = department_name + '智能POS明细' + now + '.xlsx' new_df.to_excel(file_name, index=False) result_label.config(text="数据提取成功!") else: result_label.config(text="闲的没事干了,就去给靓坤一大逼斗,请重新选择!!!") # 事件处理程序,全部提取数据 def extract_all(): # 循环按照省份拆分数据 for department in department_list: new_df = data[data['省份'] == department] file_name = department + '智能POS明细' + now + '.xlsx' new_df.to_excel(file_name, index=False) result_label.config(text="数据提取成功!") # 创建窗口 window = tk.Tk() window.title("智能POS明细数据提取") window.geometry("400x200") # 创建控件 department_label = tk.Label(window, text="省份名称:") department_entry = tk.Entry(window) extract_by_department_button = tk.Button(window, text="按省提取", command=extract_by_department) extract_all_button = tk.Button(window, text="全部提取", command=extract_all) result_label = tk.Label(window, text="") # 显示控件 department_label.pack() department_entry.pack() extract_by_department_button.pack() extract_all_button.pack() result_label.pack() # 运行窗口 window.mainloop()

import pandas as pd import datetimeimport tkinter as tkfrom tkinter import filedialogclass MyApplication(tk.Frame): def __init__(self, master=None): super().__init__(master) self.master = master self.master.title("智能POS明细提取") self.pack() self.create_widgets() def create_widgets(self): self.label_1 = tk.Label(self, text="请选择Excel文件:") self.label_1.pack() self.file_button = tk.Button(self, text="选择文件", command=self.load_file) self.file_button.pack() self.label_2 = tk.Label(self, text="请选择提取内容:") self.label_2.pack() self.choice_var = tk.StringVar() self.choice_var.set("1") self.radio_1 = tk.Radiobutton(self, text="按省提取", variable=self.choice_var, value="1") self.radio_1.pack() self.radio_2 = tk.Radiobutton(self, text="全部提取", variable=self.choice_var, value="2") self.radio_2.pack() self.submit_button = tk.Button(self, text="提取数据", command=self.extract_data) self.submit_button.pack() self.quit_button = tk.Button(self, text="退出", command=self.master.quit) self.quit_button.pack() def load_file(self): self.file_path = filedialog.askopenfilename(title="选择Excel文件", filetypes=[("Excel files", "*.xlsx")]) def extract_data(self): now = datetime.datetime.now().strftime('%Y%m%d') data = pd.read_excel(self.file_path, dtype={'商户编号':str,'终端编号':str}) department_list = data['省份'].unique() choice = self.choice_var.get() if choice == '1': department_name = input('请输入省份名称:') if department_name in department_list: new_df = data[data['省份'] == department_name ] file_name = department_name + '智能POS明细' + now + '.xlsx' new_df.to_excel(file_name, index=False) else: print('无法找到该省份!') elif choice == '2': for department in department_list: new_df = data[data['省份'] == department] file_name = department + '智能POS明细' + now + '.xlsx' new_df.to_excel(file_name, index=False)root = tk.Tk()app = MyApplication(master=root)app.mainloop()

要将此代码转换为窗口应用程序,您需要使用GUI库(如Tkinter、PyQt、wxPython等)创建一个窗口,然后将代码作为事件处理程序与窗口中的控件(如按钮、文本框等)相关联。 以下是一个基本示例,使用Tkinter库创建一个窗口并将代码添加到按钮的单击事件处理程序中: 复制 import pandas as pd import datetime import tkinter as tk # 获取当前日期,格式为年月日 now = datetime.datetime.now().strftime('%Y%m%d') # 读取Excel文件 data = pd.read_excel(r'E:\每日数据\智能POS明细.xlsx',dtype={'商户编号':str,'终端编号':str}) # 获取省份列表 department_list = data['省份'].unique() # 事件处理程序,按省份提取数据 def extract_by_department(): # 用户输入省份名称 department_name = department_entry.get() # 按照省份拆分数据 if department_name in department_list: new_df = data[data['省份'] == department_name ] file_name = department_name + '智能POS明细' + now + '.xlsx' new_df.to_excel(file_name, index=False) result_label.config(text="数据提取成功!") else: result_label.config(text="无法找到该省份!") # 事件处理程序,全部提取数据 def extract_all(): # 循环按照省份拆分数据 for department in department_list: new_df = data[data['省份'] == department] file_name = department + '智能POS明细' + now + '.xlsx' new_df.to_excel(file_name, index=False) result_label.config(text="数据提取成功!") # 创建窗口 window = tk.Tk() window.title("智能POS明细数据提取") window.geometry("400x200") # 创建控件 department_label = tk.Label(window, text="省份名称:") department_entry = tk.Entry(window) extract_by_department_button = tk.Button(window, text="按省提取", command=extract_by_department) extract_all_button = tk.Button(window, text="全部提取", command=extract_all) result_label = tk.Label(window, text="") # 显示控件 department_label.pack() department_entry.pack() extract_by_department_button.pack() extract_all_button.pack() result_label.pack() # 运行窗口 window.mainloop() 请注意,此示例中省份名称和结果标签都是使用Label和Entry控件创建的,而提取按钮使用Button控件创建,并将其单击事件处理程序设置为extract_by_department和extract_all函数。当用户单击按钮时,相关的事件处理程序将运行并提取数据。 这只是一个基本示例,您可以根据需要添加更多控件和事件处理程序。

最新推荐

recommend-type

医疗影像革命-YOLOv11实现病灶实时定位与三维重建技术解析.pdf

想深入掌握目标检测前沿技术?Yolov11绝对不容错过!作为目标检测领域的新星,Yolov11融合了先进算法与创新架构,具备更快的检测速度、更高的检测精度。它不仅能精准识别各类目标,还在复杂场景下展现出卓越性能。无论是学术研究,还是工业应用,Yolov11都能提供强大助力。阅读我们的技术文章,带你全方位剖析Yolov11,解锁更多技术奥秘!
recommend-type

智慧物流实战-YOLOv11货架商品识别与库存自动化盘点技术.pdf

想深入掌握目标检测前沿技术?Yolov11绝对不容错过!作为目标检测领域的新星,Yolov11融合了先进算法与创新架构,具备更快的检测速度、更高的检测精度。它不仅能精准识别各类目标,还在复杂场景下展现出卓越性能。无论是学术研究,还是工业应用,Yolov11都能提供强大助力。阅读我们的技术文章,带你全方位剖析Yolov11,解锁更多技术奥秘!
recommend-type

自动驾驶核心-YOLOv11多传感器融合障碍物检测模型架构揭秘.pdf

想深入掌握目标检测前沿技术?Yolov11绝对不容错过!作为目标检测领域的新星,Yolov11融合了先进算法与创新架构,具备更快的检测速度、更高的检测精度。它不仅能精准识别各类目标,还在复杂场景下展现出卓越性能。无论是学术研究,还是工业应用,Yolov11都能提供强大助力。阅读我们的技术文章,带你全方位剖析Yolov11,解锁更多技术奥秘!
recommend-type

基于多松弛(MRT)模型的格子玻尔兹曼方法(LBM)Matlab代码实现:模拟压力驱动流场与优化算法研究,使用多松弛(MRT)模型与格子玻尔兹曼方法(LBM)模拟压力驱动流的Matlab代码实现,使用

基于多松弛(MRT)模型的格子玻尔兹曼方法(LBM)Matlab代码实现:模拟压力驱动流场与优化算法研究,使用多松弛(MRT)模型与格子玻尔兹曼方法(LBM)模拟压力驱动流的Matlab代码实现,使用格子玻尔兹曼方法(LBM)模拟压力驱动流,多松弛(MRT)模型,Matlab代码 ,LBM; 驱动流; MRT模型; Matlab代码,LBM-MRT模型在Matlab中模拟压力驱动流
recommend-type

Spring Websocket快速实现与SSMTest实战应用

标题“websocket包”指代的是一个在计算机网络技术中应用广泛的组件或技术包。WebSocket是一种网络通信协议,它提供了浏览器与服务器之间进行全双工通信的能力。具体而言,WebSocket允许服务器主动向客户端推送信息,是实现即时通讯功能的绝佳选择。 描述中提到的“springwebsocket实现代码”,表明该包中的核心内容是基于Spring框架对WebSocket协议的实现。Spring是Java平台上一个非常流行的开源应用框架,提供了全面的编程和配置模型。在Spring中实现WebSocket功能,开发者通常会使用Spring提供的注解和配置类,简化WebSocket服务端的编程工作。使用Spring的WebSocket实现意味着开发者可以利用Spring提供的依赖注入、声明式事务管理、安全性控制等高级功能。此外,Spring WebSocket还支持与Spring MVC的集成,使得在Web应用中使用WebSocket变得更加灵活和方便。 直接在Eclipse上面引用,说明这个websocket包是易于集成的库或模块。Eclipse是一个流行的集成开发环境(IDE),支持Java、C++、PHP等多种编程语言和多种框架的开发。在Eclipse中引用一个库或模块通常意味着需要将相关的jar包、源代码或者配置文件添加到项目中,然后就可以在Eclipse项目中使用该技术了。具体操作可能包括在项目中添加依赖、配置web.xml文件、使用注解标注等方式。 标签为“websocket”,这表明这个文件或项目与WebSocket技术直接相关。标签是用于分类和快速检索的关键字,在给定的文件信息中,“websocket”是核心关键词,它表明该项目或文件的主要功能是与WebSocket通信协议相关的。 文件名称列表中的“SSMTest-master”暗示着这是一个版本控制仓库的名称,例如在GitHub等代码托管平台上。SSM是Spring、SpringMVC和MyBatis三个框架的缩写,它们通常一起使用以构建企业级的Java Web应用。这三个框架分别负责不同的功能:Spring提供核心功能;SpringMVC是一个基于Java的实现了MVC设计模式的请求驱动类型的轻量级Web框架;MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。Master在这里表示这是项目的主分支。这表明websocket包可能是一个SSM项目中的模块,用于提供WebSocket通讯支持,允许开发者在一个集成了SSM框架的Java Web应用中使用WebSocket技术。 综上所述,这个websocket包可以提供给开发者一种简洁有效的方式,在遵循Spring框架原则的同时,实现WebSocket通信功能。开发者可以利用此包在Eclipse等IDE中快速开发出支持实时通信的Web应用,极大地提升开发效率和应用性能。
recommend-type

电力电子技术的智能化:数据中心的智能电源管理

# 摘要 本文探讨了智能电源管理在数据中心的重要性,从电力电子技术基础到智能化电源管理系统的实施,再到技术的实践案例分析和未来展望。首先,文章介绍了电力电子技术及数据中心供电架构,并分析了其在能效提升中的应用。随后,深入讨论了智能化电源管理系统的组成、功能、监控技术以及能
recommend-type

通过spark sql读取关系型数据库mysql中的数据

Spark SQL是Apache Spark的一个模块,它允许用户在Scala、Python或SQL上下文中查询结构化数据。如果你想从MySQL关系型数据库中读取数据并处理,你可以按照以下步骤操作: 1. 首先,你需要安装`PyMySQL`库(如果使用的是Python),它是Python与MySQL交互的一个Python驱动程序。在命令行输入 `pip install PyMySQL` 来安装。 2. 在Spark环境中,导入`pyspark.sql`库,并创建一个`SparkSession`,这是Spark SQL的入口点。 ```python from pyspark.sql imp
recommend-type

新版微软inspect工具下载:32位与64位版本

根据给定文件信息,我们可以生成以下知识点: 首先,从标题和描述中,我们可以了解到新版微软inspect.exe与inspect32.exe是两个工具,它们分别对应32位和64位的系统架构。这些工具是微软官方提供的,可以用来下载获取。它们源自Windows 8的开发者工具箱,这是一个集合了多种工具以帮助开发者进行应用程序开发与调试的资源包。由于这两个工具被归类到开发者工具箱,我们可以推断,inspect.exe与inspect32.exe是用于应用程序性能检测、问题诊断和用户界面分析的工具。它们对于开发者而言非常实用,可以在开发和测试阶段对程序进行深入的分析。 接下来,从标签“inspect inspect32 spy++”中,我们可以得知inspect.exe与inspect32.exe很有可能是微软Spy++工具的更新版或者是有类似功能的工具。Spy++是Visual Studio集成开发环境(IDE)的一个组件,专门用于Windows应用程序。它允许开发者观察并调试与Windows图形用户界面(GUI)相关的各种细节,包括窗口、控件以及它们之间的消息传递。使用Spy++,开发者可以查看窗口的句柄和类信息、消息流以及子窗口结构。新版inspect工具可能继承了Spy++的所有功能,并可能增加了新功能或改进,以适应新的开发需求和技术。 最后,由于文件名称列表仅提供了“ed5fa992d2624d94ac0eb42ee46db327”,没有提供具体的文件名或扩展名,我们无法从这个文件名直接推断出具体的文件内容或功能。这串看似随机的字符可能代表了文件的哈希值或是文件存储路径的一部分,但这需要更多的上下文信息来确定。 综上所述,新版的inspect.exe与inspect32.exe是微软提供的开发者工具,与Spy++有类似功能,可以用于程序界面分析、问题诊断等。它们是专门为32位和64位系统架构设计的,方便开发者在开发过程中对应用程序进行深入的调试和优化。同时,使用这些工具可以提高开发效率,确保软件质量。由于这些工具来自Windows 8的开发者工具箱,它们可能在兼容性、效率和用户体验上都经过了优化,能够为Windows应用的开发和调试提供更加专业和便捷的解决方案。
recommend-type

如何运用电力电子技术实现IT设备的能耗监控

# 摘要 随着信息技术的快速发展,IT设备能耗监控已成为提升能效和减少环境影响的关键环节。本文首先概述了电力电子技术与IT设备能耗监控的重要性,随后深入探讨了电力电子技术的基础原理及其在能耗监控中的应用。文章详细分析了IT设备能耗监控的理论框架、实践操作以及创新技术的应用,并通过节能改造案例展示了监控系统构建和实施的成效。最后,本文展望了未来能耗监控技术的发展趋势,同时
recommend-type

2635.656845多位小数数字,js不使用四舍五入保留两位小数,然后把结果千分位,想要的结果是2,635.65;如何处理

在JavaScript中,如果你想要将2635.656845这个数字精确地保留两位小数,并且去掉多余的千分位,可以使用`toFixed()`函数结合字符串切片的方法来实现。不过需要注意的是,`toFixed()`会返回一个字符串,所以我们需要先转换它。 以下是一个示例: ```javascript let num = 2635.656845; // 使用 toFixed() 保留两位小数,然后去掉多余的三位 let roundedNum = num.toFixed(2).substring(0, 5); // 如果最后一个字符是 '0',则进一步判断是否真的只有一位小数 if (round