import pandas as pd import datetime now = datetime.datetime.now().strftime('%Y%m%d') # 获取当前日期,格式为年月日 data = pd.read_excel(r'E:\每日数据\智能POS明细.xlsx',dtype={'商户编号':str,'终端编号':str}) rows = data.shape[0] # 获取行数 shape[1]获取列数 department_list = [] for i in range(rows): temp = data["省份"][i] if temp not in department_list: department_list.append(temp) # 将省份的分类存在一个列表中 for department in department_list: new_df = pd.DataFrame() for i in range(0, rows): if data["省份"][i] == department: new_df = pd.concat([new_df, data.iloc[[i], :]], axis=0, ignore_index=True) # 上面的循环效率太低了,这么做太蠢了,其实可以用pandas的条件筛选 new_df = data[data["省份"] == department] # 如果多条件筛选,new_df = data[(data["省份"] == department)&()&()] 括号里写条件用 & 连起来 new_df.to_excel(str(department) + "智能POS明细" + now + ".xlsx", sheet_name=department, index=False)
时间: 2024-04-26 08:26:56 浏览: 98
python时间日期函数与利用pandas进行时间序列处理详解
5星 · 资源好评率100%
这段代码的功能是将一个包含省份信息的 Excel 表格按照省份分类,并将每个省份的数据保存到不同的 Excel 文件中。
代码中首先读取了一个名为 `智能POS明细.xlsx` 的 Excel 文件,并将其中的数据存储到一个名为 `data` 的 DataFrame 中。然后,使用 `shape` 方法获取了该 DataFrame 的行数和列数,并将省份信息存在一个名为 `department_list` 的列表中。
接下来,代码使用一个循环遍历了 `department_list` 中的每一个省份,并将该省份的数据保存到一个名为 `new_df` 的 DataFrame 中。具体实现方式是使用条件筛选,通过 `data["省份"] == department` 来筛选该省份的数据,并将结果存储在 `new_df` 中。最后,使用 `to_excel` 方法将 `new_df` 中的数据保存到一个名为 `省份智能POS明细YYYYMMDD.xlsx` 的 Excel 文件中。
需要注意的是,代码中的循环实现方式很低效,可以使用 Pandas 的条件筛选来替代。另外,代码中的路径需要根据实际情况进行修改。
阅读全文