在cent OS中实现 pls input your frist num:10 pls input your second num:20 your sum: ((10+20)) = 30

时间: 2024-10-11 15:15:01 浏览: 22
在 CentOS 中实现这种简单的命令行交互功能,通常你可以创建一个 shell 脚本,让用户通过输入来获取两个数并计算它们的和。下面是一个基本的例子: ```bash #!/bin/bash # 定义一个函数用于接收用户输入并计算和 calculate_sum() { echo "pls input your first num:" read first_num echo "pls input your second num:" read second_num sum=$((first_num + second_num)) echo "your sum: ($((first_num+second_num))) = $sum" } # 调用函数开始计算 calculate_sum ``` 这个脚本首先声明了一个名为 `calculate_sum` 的函数,它会提示用户输入两个数字,然后将这两个数相加并将结果输出到屏幕上。运行此脚本时,你需要给它执行权限 (`chmod +x scriptname.sh`),然后用 `./scriptname.sh` 来运行。 如果你想要在终端中直接模拟上述过程,可以手动输入数字,但在实际的 CentOS 环境中,用户需要通过打开终端并运行脚本来完成操作。
相关问题

解释如下代码:for pic_id1 in range(1,N_pic+1): print('matching ' + set_name +': ' +str(pic_id1).zfill(5)) N_CHANGE = 0 for T_id in range(1,16,3): for H_id in range(2,5): FAIL_CORNER = 0 data_mat1 = read_data(input_file,pic_id1,T_id,H_id) search_list = range( max((pic_id1-10),1),pic_id1)+ range(pic_id1+1, min((pic_id1 + 16),N_pic + 1 ) ) for cor_ind in range(0,N_cor): row_cent1 = cor_row_center[cor_ind] col_cent1 = cor_col_center[cor_ind] img_corner = data_mat1[(row_cent1-N_pad): (row_cent1+N_pad+1), (col_cent1-N_pad): (col_cent1+N_pad+1) ] if ((len(np.unique(img_corner))) >2)&(np.sum(img_corner ==1)< 0.8*(N_pad2+1)**2) : for pic_id2 in search_list: data_mat2 = read_data(input_file,pic_id2,T_id,H_id) match_result = cv2_based(data_mat2,img_corner) if len(match_result[0]) ==1: row_cent2 = match_result[0][0]+ N_pad col_cent2 = match_result[1][0]+ N_pad N_LEF = min( row_cent1 , row_cent2) N_TOP = min( col_cent1, col_cent2 ) N_RIG = min( L_img-1-row_cent1 , L_img-1-row_cent2) N_BOT = min( L_img-1-col_cent1 , L_img-1-col_cent2) IMG_CHECK1 = data_mat1[(row_cent1-N_LEF): (row_cent1+N_RIG+1), (col_cent1-N_TOP): (col_cent1+N_BOT+1) ] IMG_CHECK2 = data_mat2[(row_cent2-N_LEF): (row_cent2+N_RIG+1), (col_cent2-N_TOP): (col_cent2+N_BOT+1) ] if np.array_equal(IMG_CHECK1,IMG_CHECK2) : check_row_N = IMG_CHECK1.shape[0] check_col_N = IMG_CHECK1.shape[1] if (check_col_Ncheck_row_N>=25): match_all.append( (pic_id1, row_cent1, col_cent1, pic_id2 , row_cent2, col_cent2) ) search_list.remove(pic_id2) else: FAIL_CORNER = FAIL_CORNER +1 N_CHANGE = N_CHANGE + 1 #%% break if less than 1 useless corners, or have detected more than 10 images from 60 if(FAIL_CORNER <= 1): break

这段代码是一个嵌套的循环结构,用于在多张图像之间进行匹配,并将匹配结果存储在列表match_all中。 具体地,外层循环是对图像编号pic_id1进行遍历,其中pic_id1的取值范围是1到N_pic,每次循环开始时会输出一行提示信息,格式为“matching + set_name + : + pic_id1的值(5位数字,前面用0填充)”。 内层循环是对图像中的角点进行遍历,其中T_id的取值范围是1到15,步长为3,H_id的取值范围是2到4,表示在图像的第T_id个特征点和第H_id个金字塔层的角点处进行匹配。 在内层循环的每次迭代中,首先调用read_data函数从图像文件中读取数据,然后使用range函数生成一个搜索列表search_list,其中包含了当前图像之前10张和之后15张图像的编号,这些图像将被用来与当前图像进行匹配。 接着对每个角点进行处理,首先计算角点的中心坐标row_cent1和col_cent1,然后从data_mat1中提取一个大小为(N_pad2+1)×(N_pad2+1)的小图像img_corner,其中N_pad是一个参数,表示小图像的大小。 如果提取的小图像中的像素值不止两种,并且像素值为1的像素数小于小图像总像素数的80%,则开始在搜索列表中的图像中寻找与该小图像匹配的图像,这里使用了cv2_based函数进行图像匹配。 如果找到了一个与小图像匹配的图像,则计算该图像对应的角点的中心坐标row_cent2和col_cent2,然后将两个图像中以两个角点为中心,大小相同的区域提取出来,分别存储在IMG_CHECK1和IMG_CHECK2中。 如果IMG_CHECK1和IMG_CHECK2相等,且它们的大小都不小于25×25,则将当前匹配结果的信息(两个图像的编号以及两个角点的中心坐标)添加到match_all列表中,同时将已匹配的图像从搜索列表中移除。 如果在内层循环的所有迭代中都没有找到与当前角点匹配的图像,则将FAIL_CORNER计数器加一,表示当前角点无法匹配,同时将N_CHANGE计数器加一。 内层循环结束后,会检查FAIL_CORNER的值是否小于等于1,如果是,则跳出外层循环,否则继续下一次循环。这个判断的目的是在不需要再进行匹配的情况下尽早结束循环,以提高代码效率。

解释如下代码:如果((len(np.unique(img_corner)))>2)&(np.sum(img_corner==1)<0.8*(N_pad*2+1)**2): 对于search_list中的pic_id2: data_mat2=读取数据(input_file,pic_id2,T_id,H_id) match_result=基于cv2_based(data_mat2,img_corner) 如果len(match_result[0])==1: row_cent2=match_result[0][0]+N_pad col_cent2=match_result[1][0]+N_pad N_LEF=最小值(第1行,第2行) N_TOP=最小值(col_cent1,col_cent2) N_RIG=最小值(L_img-1-行_cent1,L_img-1-row_cent2) N_BOT=最小(L_img-1-col_cent1,L_img-1-col_cent2) IMG_CHECK1=data_mat1[(row_centr1-N_LEF):(row_cent1+N_RIG+1),(col_cent1-N_TOP):(col_centr1+N_BOT+1)] IMG_CHECK2=data_mat2[(row_centr2-N_LEF):(row_cent2+N_RIG+1),(col_cent2-N_TOP):(col_centr2+N_BOT+1)] 如果np.array_equal(IMG_CHECK1,IMG_CHECK2): check_row_N=IMG_CHECK1.shape[0] check_col_N=IMG_CHECK1.shape[1] 如果(check_col_N*check_row_N>=25): match_all.append((pic_id1,row_cent1,col_cent1、pic_id2、row_cent2、col_cent2)) search_list.remove(pic_id2) 其他: FAIL_CORNER=FAIL_CORNER+1

这段代码是一个条件语句,如果条件`((len(np.unique(img_corner)))>2)&(np.sum(img_corner==1)<0.8*(N_pad*2+1)**2)`成立,那么就会执行对`search_list`中每个`pic_id2`的操作。 其中, - `img_corner`是一个二维数组,表示图像的角点。`np.unique(img_corner)`返回数组中不同的元素值,如果有两个以上不同值,则`len(np.unique(img_corner)) > 2`成立。 - `np.sum(img_corner==1)`表示在`img_corner`数组中等于1的元素数量,如果这个数量小于`(0.8*(N_pad*2+1)**2)`,则`np.sum(img_corner==1) < 0.8*(N_pad*2+1)**2`成立。 - `data_mat2 = 读取数据(input_file, pic_id2, T_id, H_id)`是读取数据的操作,它会返回一个二维数组`data_mat2`,表示图像数据。 - `match_result = 基于cv2_based(data_mat2, img_corner)`是基于`cv2_based`算法的图像匹配操作,它会返回匹配结果的行列坐标。 - 如果`len(match_result[0]) == 1`成立,表示找到了一个匹配点,那么就会执行以下操作: - `row_cent2 = match_result[0][0] + N_pad`和`col_cent2 = match_result[1][0] + N_pad`是计算匹配点的坐标。 - `N_LEF = min(第1行, 第2行)`、`N_TOP = min(col_cent1, col_cent2)`、`N_RIG = min(L_img-1-行_cent1, L_img-1-row_cent2)`和`N_BOT = min(L_img-1-col_cent1, L_img-1-col_cent2)`是计算匹配点与图像边缘的距离。 - `IMG_CHECK1 = data_mat1[(row_centr1-N_LEF):(row_cent1+N_RIG+1), (col_cent1-N_TOP):(col_centr1+N_BOT+1)]`和`IMG_CHECK2 = data_mat2[(row_centr2-N_LEF):(row_cent2+N_RIG+1), (col_cent2-N_TOP):(col_centr2+N_BOT+1)]`是用来检查匹配点周围像素的区域。 - 如果`np.array_equal(IMG_CHECK1, IMG_CHECK2)`成立,说明两个图像匹配成功,那么就会执行以下操作: - `check_row_N = IMG_CHECK1.shape[0]`和`check_col_N = IMG_CHECK1.shape[1]`是计算匹配区域的行数和列数。 - 如果`check_col_N*check_row_N >= 25`成立,说明匹配区域的面积大于等于25个像素,那么就会将匹配成功的图像对信息添加到`match_all`列表中,并从`search_list`中删除`pic_id2`元素。 - 否则,就会执行`FAIL_CORNER = FAIL_CORNER + 1`,表示匹配失败的角点数量加1。
阅读全文

相关推荐

代码改进:import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn.datasets import make_blobs def distEclud(arrA,arrB): #欧氏距离 d = arrA - arrB dist = np.sum(np.power(d,2),axis=1) #差的平方的和 return dist def randCent(dataSet,k): #寻找质心 n = dataSet.shape[1] #列数 data_min = dataSet.min() data_max = dataSet.max() #生成k行n列处于data_min到data_max的质心 data_cent = np.random.uniform(data_min,data_max,(k,n)) return data_cent def kMeans(dataSet,k,distMeans = distEclud, createCent = randCent): x,y = make_blobs(centers=100)#生成k质心的数据 x = pd.DataFrame(x) m,n = dataSet.shape centroids = createCent(dataSet,k) #初始化质心,k即为初始化质心的总个数 clusterAssment = np.zeros((m,3)) #初始化容器 clusterAssment[:,0] = np.inf #第一列设置为无穷大 clusterAssment[:,1:3] = -1 #第二列放本次迭代点的簇编号,第三列存放上次迭代点的簇编号 result_set = pd.concat([pd.DataFrame(dataSet), pd.DataFrame(clusterAssment)],axis = 1,ignore_index = True) #将数据进行拼接,横向拼接,即将该容器放在数据集后面 clusterChanged = True while clusterChanged: clusterChanged = False for i in range(m): dist = distMeans(dataSet.iloc[i,:n].values,centroids) #计算点到质心的距离(即每个值到质心的差的平方和) result_set.iloc[i,n] = dist.min() #放入距离的最小值 result_set.iloc[i,n+1] = np.where(dist == dist.min())[0] #放入距离最小值的质心标号 clusterChanged = not (result_set.iloc[:,-1] == result_set.iloc[:,-2]).all() if clusterChanged: cent_df = result_set.groupby(n+1).mean() #按照当前迭代的数据集的分类,进行计算每一类中各个属性的平均值 centroids = cent_df.iloc[:,:n].values #当前质心 result_set.iloc[:,-1] = result_set.iloc[:,-2] #本次质心放到最后一列里 return centroids, result_set x = np.random.randint(0,100,size=100) y = np.random.randint(0,100,size=100) randintnum=pd.concat([pd.DataFrame(x), pd.DataFrame(y)],axis = 1,ignore_index = True) #randintnum_test, randintnum_test = kMeans(randintnum,3) #plt.scatter(randintnum_test.iloc[:,0],randintnum_test.iloc[:,1],c=randintnum_test.iloc[:,-1]) #result_test,cent_test = kMeans(data, 4) cent_test,result_test = kMeans(randintnum, 3) plt.scatter(result_test.iloc[:,0],result_test.iloc[:,1],c=result_test.iloc[:,-1]) plt.scatter(cent_test[:,0],cent_test[:,1],color = 'red',marker = 'x',s=100)

最新推荐

recommend-type

解决Cent0S 6.7直接在/etc/resolv.conf文件下修改DNS地址重启不生效问题

在Linux系统中,尤其是CentOS 6.7版本,配置网络连接时,有时会遇到一些问题,例如在`/etc/resolv.conf`文件中修改DNS地址后,重启系统或网络服务,这些更改不会生效。这个问题通常与网络服务的管理方式有关,特别是...
recommend-type

2023年第三届长三角数学建模c题考试题目.zip

2023年第三届长三角数学建模c题考试题目,可下载练习
recommend-type

基于人工智能的毕业设计辅助系统基础教程

随着人工智能技术的飞速发展,越来越多的学生和研究人员开始利用AI技术来辅助他们的毕业设计。本教程旨在指导读者如何开发一个基于人工智能的毕业设计辅助系统,帮助学生更高效地完成毕业设计任务。
recommend-type

yolo算法-人脸情绪数据集-9400张图像带标签-内容-愤怒-害怕-厌恶-中立的-惊喜-悲哀的-幸福的.zip

yolo系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依