TypeError Traceback (most recent call last) Cell In[4], line 8 6 FAIL_CORNER = 0 7 data_mat1 = read_data(input_file,pic_id1,T_id,H_id) ----> 8 search_list = range( max((pic_id1-10),1),pic_id1)+ range(pic_id1+1, min((pic_id1 + 16),N_pic + 1 ) ) 10 for cor_ind in range(0,N_cor): 11 row_cent1 = cor_row_center[cor_ind] TypeError: unsupported operand type(s) for +: 'range' and 'range'
时间: 2024-03-28 16:41:31 浏览: 233
这个错误说明在第8行代码中,两个range函数之间使用了"+"号,但是range对象不支持加法运算。你可以将两个range对象转换成列表,然后再使用"+"号进行拼接,或者使用chain函数将两个range对象连接起来。例如:
```
search_list = list(range(max((pic_id1-10),1),pic_id1)) + list(range(pic_id1+1, min((pic_id1 + 16),N_pic + 1)))
```
或者:
```
from itertools import chain
search_list = list(chain(range(max((pic_id1-10),1),pic_id1),range(pic_id1+1, min((pic_id1 + 16),N_pic + 1))))
```
这样就可以避免这个错误了。
相关问题
TypeError Traceback (most recent call last) Cell In[5], line 13 11 row_cent1 = cor_row_center[cor_ind] 12 col_cent1 = cor_col_center[cor_ind] ---> 13 img_corner = data_mat1[(row_cent1-N_pad): (row_cent1+N_pad+1), (col_cent1-N_pad): (col_cent1+N_pad+1) ] 14 if ((len(np.unique(img_corner))) >2)&(np.sum(img_corner ==1)< 0.8*(N_pad*2+1)**2) : 16 for pic_id2 in search_list: TypeError: slice indices must be integers or None or have an __index__ method
这个错误可能是由于 `row_cent1` 或 `col_cent1` 的值不是整型导致的。可以在调用 `int()` 函数将其强制转换成整型,例如:
```
img_corner = data_mat1[int(row_cent1-N_pad): int(row_cent1+N_pad+1), int(col_cent1-N_pad): int(col_cent1+N_pad+1)]
```
这样就可以将 `row_cent1` 和 `col_cent1` 强制转换成整型,避免这个错误。
TypeError Traceback (most recent call last) Cell In[76], line 1 ----> 1 train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8) 2 for X, X_valid_len, Y, Y_valid_len in train_iter: 3 print('X:', X.type(torch.int32)) Cell In[75], line 5, in load_data_nmt(batch_size, num_steps, num_examples) 3 """返回翻译数据集的迭代器和词表""" 4 text = preprocess_nmt(read_data_nmt()) ----> 5 source, target = tokenize_nmt(text, num_examples) 6 src_vocab = d2l.Vocab(source, min_freq=2, 7 reserved_tokens=['<pad>', '<bos>', '<eos>']) 8 tgt_vocab = d2l.Vocab(target, min_freq=2, 9 reserved_tokens=['<pad>', '<bos>', '<eos>']) TypeError: cannot unpack non-iterable NoneType object
这个错误是因为`tokenize_nmt`函数返回了`None`对象,而在调用`load_data_nmt`函数时,使用了解包操作来获取返回值。这表明`tokenize_nmt`函数在执行过程中出现了错误,导致返回值为空。建议检查`tokenize_nmt`函数的实现,确保它能够正确地返回词元化后的源语言和目标语言序列,并且返回值是一个可以迭代的对象。另外,也可以在`load_data_nmt`函数中添加适当的异常处理代码,以便在出现错误时能够捕获并处理异常。
阅读全文