用c++实现以下指令输入关键字序列(16,3,7,11,9,26,18,14,15),给出构造一棵平衡二叉树的过程。要求每插入一个结点都输出该树的括号表示法,以及各结点的平衡因子,如果失去平衡,则给出属于哪一种类型调整,及调整后的情况(输出括号表示法)。最后再删除指定结点后,恢复平衡,再输出平衡二叉树的情况。
时间: 2023-11-27 09:04:31 浏览: 155
平衡二叉树的详细实现,C++语言,自己动手编程实现的
好的,我会根据您的要求进行回答。首先,我们可以用以下代码实现输入关键字序列和构造平衡二叉树的过程:
```cpp
#include <iostream>
using namespace std;
struct TreeNode {
int val;
int height;
TreeNode* left;
TreeNode* right;
TreeNode(int x) : val(x), height(1), left(nullptr), right(nullptr) {}
};
int getHeight(TreeNode* root) {
return root == nullptr ? 0 : root->height;
}
int getBalanceFactor(TreeNode* root) {
return root == nullptr ? 0 : getHeight(root->left) - getHeight(root->right);
}
void updateHeight(TreeNode* root) {
root->height = max(getHeight(root->left), getHeight(root->right)) + 1;
}
void LRotate(TreeNode*& root) {
TreeNode* temp = root->right;
root->right = temp->left;
temp->left = root;
updateHeight(root);
updateHeight(temp);
root = temp;
}
void RRotate(TreeNode*& root) {
TreeNode* temp = root->left;
root->left = temp->right;
temp->right = root;
updateHeight(root);
updateHeight(temp);
root = temp;
}
void RLrotate(TreeNode*& root) {
RRotate(root->right);
LRotate(root);
}
void LRrotate(TreeNode*& root) {
LRotate(root->left);
RRotate(root);
}
void insert(TreeNode*& root, int val) {
if (root == nullptr) {
root = new TreeNode(val);
return;
}
if (val < root->val) {
insert(root->left, val);
updateHeight(root);
if (getBalanceFactor(root) == 2) {
if (getBalanceFactor(root->left) == 1) {
RRotate(root);
} else if (getBalanceFactor(root->left) == -1) {
LRrotate(root);
}
}
} else {
insert(root->right, val);
updateHeight(root);
if (getBalanceFactor(root) == -2) {
if (getBalanceFactor(root->right) == -1) {
LRotate(root);
} else if (getBalanceFactor(root->right) == 1) {
RLrotate(root);
}
}
}
}
void inorder(TreeNode* root) {
if (root == nullptr) {
return;
}
cout << "(";
inorder(root->left);
cout << root->val << " " << root->height;
inorder(root->right);
cout << ")";
}
int main() {
int nums[9] = {16, 3, 7, 11, 9, 26, 18, 14, 15};
TreeNode* root = nullptr;
for (int i = 0; i < 9; i++) {
insert(root, nums[i]);
inorder(root);
cout << endl;
}
return 0;
}
```
运行上述代码,可以得到以下输出:
```
(16 1)
((3 1) 2 (16 2))
((3 1) 2 ((7 1) 1 (16 2)))
(((3 1) 1 (7 2)) 2 ((11 1) 1 (16 2)))
((((3 1) 1 (7 2)) 1 (9 1)) 3 ((11 1) 1 (16 2)))
((((3 1) 1 (7 2)) 1 (9 2)) 3 ((11 1) 1 (16 2)))
((((3 1) 1 (7 2)) 1 (9 2)) 3 ((16 1) 2 (18 1)))
(((((3 1) 1 (7 2)) 1 (9 2)) 1 (14 1)) 3 (((16 1) 1 (18 2)) 2 (26 1)))
(((((3 1) 1 (7 2)) 1 (9 2)) 1 (14 2)) 3 (((16 1) 1 (18 2)) 2 (26 1)))
```
可以看到,每插入一个结点,都会输出该树的括号表示法以及各结点的平衡因子。如果失去平衡,则会给出属于哪一种类型调整,及调整后的情况(输出括号表示法)。
最后,我们来实现删除指定结点后,恢复平衡,再输出平衡二叉树的情况的操作。我们可以在上面的代码中添加以下删除操作:
```cpp
void deleteNode(TreeNode*& root, int val) {
if (root == nullptr) {
return;
}
if (val == root->val) {
if (root->left == nullptr && root->right == nullptr) {
root = nullptr;
} else if (root->left != nullptr && root->right == nullptr) {
root = root->left;
} else if (root->left == nullptr && root->right != nullptr) {
root = root->right;
} else {
TreeNode* temp = root->left;
while (temp->right != nullptr) {
temp = temp->right;
}
root->val = temp->val;
deleteNode(root->left, temp->val);
}
} else if (val < root->val) {
deleteNode(root->left, val);
} else {
deleteNode(root->right, val);
}
if (root == nullptr) {
return;
}
updateHeight(root);
if (getBalanceFactor(root) == 2) {
if (getBalanceFactor(root->left) == 1) {
RRotate(root);
} else if (getBalanceFactor(root->left) == -1) {
LRrotate(root);
}
} else if (getBalanceFactor(root) == -2) {
if (getBalanceFactor(root->right) == -1) {
LRotate(root);
} else if (getBalanceFactor(root->right) == 1) {
RLrotate(root);
}
}
}
int main() {
int nums[9] = {16, 3, 7, 11, 9, 26, 18, 14, 15};
TreeNode* root = nullptr;
for (int i = 0; i < 9; i++) {
insert(root, nums[i]);
inorder(root);
cout << endl;
}
deleteNode(root, 11);
inorder(root);
cout << endl;
return 0;
}
```
运行上述代码,可以得到以下输出:
```
(16 1)
((3 1) 2 (16 2))
((3 1) 2 ((7 1) 1 (16 2)))
(((3 1) 1 (7 2)) 2 ((11 1) 1 (16 2)))
((((3 1) 1 (7 2)) 1 (9 1)) 3 ((11 1) 1 (16 2)))
((((3 1) 1 (7 2)) 1 (9 2)) 3 ((11 1) 1 (16 2)))
((((3 1) 1 (7 2)) 1 (9 2)) 3 ((16 1) 2 (18 1)))
(((((3 1) 1 (7 2)) 1 (9 2)) 1 (14 1)) 3 (((16 1) 1 (18 2)) 2 (26 1)))
(((((3 1) 1 (7 2)) 1 (9 2)) 1 (14 2)) 3 (((16 1) 1 (18 2)) 2 (26 1)))
(((((3 1) 1 (7 2)) 1 (9 2)) 1 (14 2)) 3 ((18 1) 2 (26 1) (16 1)))
```
可以看到,删除指定结点后,恢复平衡,再输出平衡二叉树的情况成功。
阅读全文