上面的代码运行之后报错:AttributeError: module 'tensorflow' has no attribute 'placeholder'
时间: 2023-06-21 17:17:02 浏览: 202
AttributeError: module 'tensorflow.compat.v1' has no attribute '
这个错误可能是因为您的TensorFlow版本不同导致的。在TensorFlow 2.0中,`tf.placeholder`被移除了,改为使用`tf.compat.v1.placeholder`。如果您正在使用TensorFlow 2.0或更高版本,请将代码中的`tf.placeholder`替换为`tf.compat.v1.placeholder`。如果您正在使用TensorFlow 1.x版本,则可以将代码中的`tf.compat.v1.placeholder`替换为`tf.placeholder`。
以下是修改后的代码示例:
```python
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as np
import random
# 数据预处理
poems = []
with open('poems.txt', 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if len(line) <= 10:
continue
poems.append(line)
# 获取所有唐诗的字符集
all_words = []
for poem in poems:
all_words += [word for word in poem]
all_words = list(set(all_words))
all_words.sort()
# 创建字符到数字的映射
word_num_map = dict(zip(all_words, range(len(all_words))))
num_word_map = dict(zip(range(len(all_words)), all_words))
# 定义超参数
batch_size = 64
time_steps = 50
input_size = len(all_words)
output_size = len(all_words)
cell_size = 128
learning_rate = 0.01
# 定义占位符
X = tf.compat.v1.placeholder(tf.float32, [None, time_steps, input_size])
Y = tf.compat.v1.placeholder(tf.float32, [None, output_size])
# 定义RNN模型
cell = tf.contrib.rnn.BasicLSTMCell(num_units=cell_size)
init_state = cell.zero_state(batch_size, dtype=tf.float32)
outputs, final_state = tf.nn.dynamic_rnn(cell, X, initial_state=init_state, dtype=tf.float32)
output = tf.reshape(outputs, [-1, cell_size])
W = tf.Variable(tf.truncated_normal([cell_size, output_size], stddev=0.1))
b = tf.Variable(tf.zeros([output_size]))
logits = tf.matmul(output, W) + b
probs = tf.nn.softmax(logits)
# 定义损失函数和优化器
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y))
train_op = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)
# 训练模型
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(5000):
start = random.randint(0, len(all_words) - time_steps - 1)
end = start + time_steps + 1
batch = [word_num_map[word] for word in all_words[start:end]]
input_batch = np.zeros((batch_size, time_steps, input_size))
output_batch = np.zeros((batch_size, output_size))
for j in range(batch_size):
input_batch[j] = tf.one_hot(batch[j: j + time_steps], input_size).eval()
output_batch[j] = tf.one_hot(batch[j + 1: j + time_steps + 1], output_size).eval()[-1]
_, cost = sess.run([train_op, loss], feed_dict={X: input_batch, Y: output_batch})
if i % 100 == 0:
print('step %d, cost %f' % (i, cost))
# 生成唐诗
start_word = '春'
start_word_vec = np.zeros((1, 1, input_size))
start_word_vec[0, 0, word_num_map[start_word]] = 1
poem = start_word
state = sess.run(cell.zero_state(1, tf.float32))
for i in range(100):
probs_val, state_val = sess.run([probs, final_state], feed_dict={X: start_word_vec, init_state: state})
word_index = np.argmax(probs_val)
word = num_word_map[word_index]
poem += word
start_word_vec[0, 0, word_index] = 1
state = state_val
if word == '。':
break
print(poem)
```
希望这次能够成功运行!
阅读全文