int main() { MGraph G; cin>>G.vexnum; GreatGraph(G); DFSGraph(G); cout<<endl; return 0; }

时间: 2024-06-07 11:11:13 浏览: 3
这是一个基于邻接矩阵存储的无向图的深度优先遍历算法的主函数。具体来说,程序通过读入图的顶点个数,然后调用GreatGraph函数构建无向图的邻接矩阵表示,接着调用DFSGraph函数对图进行深度优先遍历,并输出遍历结果。最后程序结束并返回0。 需要注意的是,这段代码中的MGraph、GreatGraph和DFSGraph都是自定义的函数或结构体,需要在其他地方定义和实现。
相关问题

本题要求建立一个无向图,采用邻接矩阵做为存储结构。 例如 image.png 函数接口定义: void CreatMGraph(MGraph &G);//创建图G int locate(MGraph G,char v);//返回顶点v的下标 G 为图,采用邻接矩阵存储结构,v 是顶点的值。

根据函数接口定义和题目要求,可以参考以下代码实现创建无向图并用邻接矩阵存储: ```c++ #include <iostream> using namespace std; #define MAX_VERTEX_NUM 100 // 最大节点数 // 邻接矩阵存储的图结构体 typedef struct { char vexs[MAX_VERTEX_NUM]; // 顶点集合 int arcs[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; // 邻接矩阵,记录边信息 int vexnum, arcnum; // 图的顶点数和边数 } MGraph; // 返回顶点 v 的下标,如果不存在返回 -1 int locate(MGraph G, char v) { for (int i = 0; i < G.vexnum; i++) { if (G.vexs[i] == v) { return i; } } return -1; } // 创建无向图 void CreatMGraph(MGraph& G) { cout << "请输入节点数和边数:" << endl; cin >> G.vexnum >> G.arcnum; cout << "请输入节点信息:" << endl; for (int i = 0; i < G.vexnum; i++) { cin >> G.vexs[i]; } // 初始化邻接矩阵 for (int i = 0; i < G.vexnum; i++) { for (int j = 0; j < G.vexnum; j++) { G.arcs[i][j] = 0; // 初始值为 0,表示没有边相连 } } cout << "请输入边信息:" << endl; for (int k = 0; k < G.arcnum; k++) { char v1, v2; cout << "请输入第" << k + 1 << "条边的两个端点:" << endl; cin >> v1 >> v2; int i = locate(G, v1); int j = locate(G, v2); if (i == -1 || j == -1) { cout << "输入的节点信息有误!" << endl; return; } G.arcs[i][j] = 1; // 标记节点 i 和节点 j 相连 G.arcs[j][i] = 1; // 由于是无向图,节点 j 和节点 i 也相连 } } int main() { MGraph G; CreatMGraph(G); // 输出邻接矩阵 cout << "邻接矩阵为:" << endl; for (int i = 0; i < G.vexnum; i++) { for (int j = 0; j < G.vexnum; j++) { cout << G.arcs[i][j] << ' '; } cout << endl; } return 0; } ``` 注意,在输入边信息时,需要先通过 `locate` 函数找到两个节点在邻接矩阵中的下标,然后将它们标记为相连。由于是无向图,需要同时标记节点 j 和节点 i 相连。

请编写代码,要求如下:建立图的邻接表,邻接矩阵 Create_Graph( LGraph lg. MGraph mg ) ②邻接表表示的图的递归深度优先遍历 LDFS( LGraph g, int i ) ③邻接矩阵表示的图的递归深度优先遍历MDFS( MGraph g,int i, int vn ) ④邻接表表示的图的广度优先遍历 LBFS( LGraph g, int s, int n ) ⑤邻接矩阵表示的图的广度优先遍历 MBFS(MGraph g, int s, int n )

以下是 C++ 代码实现: ```cpp #include<iostream> #include<queue> using namespace std; // 邻接表存储结构 #define MAX_VERTEX_NUM 100 typedef struct ArcNode { int adjvex; // 该弧指向的顶点的位置 struct ArcNode *nextarc; // 指向下一条弧的指针 //InfoType info; // 网的边权值 } ArcNode; typedef struct VNode { char data; // 顶点信息 ArcNode *firstarc; // 指向第一条依附该顶点的弧的指针 } VNode, AdjList[MAX_VERTEX_NUM]; typedef struct { AdjList vertices; int vexnum, arcnum; // 图的当前顶点数和弧数 } LGraph; // 邻接矩阵存储结构 #define INFINITY INT_MAX typedef struct { char vexs[MAX_VERTEX_NUM]; // 顶点向量 int arcs[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; // 邻接矩阵,可看作边表 int vexnum, arcnum; // 图的当前顶点数和弧数 } MGraph; // 邻接表表示的图的递归深度优先遍历 void DFS(LGraph g, int i, int *visited) { visited[i] = 1; cout << g.vertices[i].data << " "; ArcNode *p = g.vertices[i].firstarc; while (p != NULL) { if (visited[p->adjvex] == 0) { DFS(g, p->adjvex, visited); } p = p->nextarc; } } void LDFS(LGraph g, int i) { int visited[MAX_VERTEX_NUM] = { 0 }; DFS(g, i, visited); } // 邻接矩阵表示的图的递归深度优先遍历 void MDFS(MGraph g, int i, int *visited) { visited[i] = 1; cout << g.vexs[i] << " "; for (int j = 0; j < g.vexnum; j++) { if (g.arcs[i][j] != 0 && visited[j] == 0) { MDFS(g, j, visited); } } } void MDFS(MGraph g, int i) { int visited[MAX_VERTEX_NUM] = { 0 }; MDFS(g, i, visited); } // 邻接表表示的图的广度优先遍历 void LBFS(LGraph g, int s) { queue<int> q; int visited[MAX_VERTEX_NUM] = { 0 }; visited[s] = 1; cout << g.vertices[s].data << " "; q.push(s); while (!q.empty()) { int v = q.front(); q.pop(); ArcNode *p = g.vertices[v].firstarc; while (p != NULL) { if (visited[p->adjvex] == 0) { visited[p->adjvex] = 1; cout << g.vertices[p->adjvex].data << " "; q.push(p->adjvex); } p = p->nextarc; } } } // 邻接矩阵表示的图的广度优先遍历 void MBFS(MGraph g, int s) { queue<int> q; int visited[MAX_VERTEX_NUM] = { 0 }; visited[s] = 1; cout << g.vexs[s] << " "; q.push(s); while (!q.empty()) { int v = q.front(); q.pop(); for (int j = 0; j < g.vexnum; j++) { if (g.arcs[v][j] != 0 && visited[j] == 0) { visited[j] = 1; cout << g.vexs[j] << " "; q.push(j); } } } } // 建立图的邻接表 void Create_Graph(LGraph &g, MGraph &mg) { // 邻接表 g.vexnum = mg.vexnum; g.arcnum = mg.arcnum; for (int i = 0; i < mg.vexnum; i++) { g.vertices[i].data = mg.vexs[i]; g.vertices[i].firstarc = NULL; } for (int i = 0; i < mg.vexnum; i++) { for (int j = 0; j < mg.vexnum; j++) { if (mg.arcs[i][j] != 0) { ArcNode *p = new ArcNode; p->adjvex = j; p->nextarc = g.vertices[i].firstarc; g.vertices[i].firstarc = p; } } } // 邻接矩阵 for (int i = 0; i < mg.vexnum; i++) { for (int j = 0; j < mg.vexnum; j++) { if (mg.arcs[i][j] == INFINITY) { mg.arcs[i][j] = 0; } } } } int main() { LGraph lg; MGraph mg; // 初始化邻接矩阵 mg.vexnum = 5; mg.arcnum = 7; for (int i = 0; i < mg.vexnum; i++) { for (int j = 0; j < mg.vexnum; j++) { mg.arcs[i][j] = INFINITY; } } mg.vexs[0] = 'A'; mg.vexs[1] = 'B'; mg.vexs[2] = 'C'; mg.vexs[3] = 'D'; mg.vexs[4] = 'E'; mg.arcs[0][1] = 1; mg.arcs[0][2] = 1; mg.arcs[1][2] = 1; mg.arcs[1][3] = 1; mg.arcs[2][0] = 1; mg.arcs[2][3] = 1; mg.arcs[3][4] = 1; // 建立邻接表 Create_Graph(lg, mg); // 邻接表表示的图的递归深度优先遍历 LDFS(lg, 0); cout << endl; // 邻接矩阵表示的图的递归深度优先遍历 MDFS(mg, 0); cout << endl; // 邻接表表示的图的广度优先遍历 LBFS(lg, 0); cout << endl; // 邻接矩阵表示的图的广度优先遍历 MBFS(mg, 0); cout << endl; return 0; } ``` 注意:以上代码只是一种实现方法,不一定是最优的。在实际应用中,还需要考虑图的具体特征和需求,选择合适的存储结构和算法。

相关推荐

zip
旅游社交小程序功能有管理员和用户。管理员有个人中心,用户管理,每日签到管理,景点推荐管理,景点分类管理,防疫查询管理,美食推荐管理,酒店推荐管理,周边推荐管理,分享圈管理,我的收藏管理,系统管理。用户可以在微信小程序上注册登录,进行每日签到,防疫查询,可以在分享圈里面进行分享自己想要分享的内容,查看和收藏景点以及美食的推荐等操作。因而具有一定的实用性。 本站后台采用Java的SSM框架进行后台管理开发,可以在浏览器上登录进行后台数据方面的管理,MySQL作为本地数据库,微信小程序用到了微信开发者工具,充分保证系统的稳定性。系统具有界面清晰、操作简单,功能齐全的特点,使得旅游社交小程序管理工作系统化、规范化。 管理员可以管理用户信息,可以对用户信息添加修改删除。管理员可以对景点推荐信息进行添加修改删除操作。管理员可以对分享圈信息进行添加,修改,删除操作。管理员可以对美食推荐信息进行添加,修改,删除操作。管理员可以对酒店推荐信息进行添加,修改,删除操作。管理员可以对周边推荐信息进行添加,修改,删除操作。 小程序用户是需要注册才可以进行登录的,登录后在首页可以查看相关信息,并且下面导航可以点击到其他功能模块。在小程序里点击我的,会出现关于我的界面,在这里可以修改个人信息,以及可以点击其他功能模块。用户想要把一些信息分享到分享圈的时候,可以点击新增,然后输入自己想要分享的信息就可以进行分享圈的操作。用户可以在景点推荐里面进行收藏和评论等操作。用户可以在美食推荐模块搜索和查看美食推荐的相关信息。

最新推荐

recommend-type

C++实现的俄罗斯方块游戏

一个简单的俄罗斯方块游戏的C++实现,涉及基本的游戏逻辑和控制。这个示例包括了初始化、显示、移动、旋转和消除方块等基本功能。 主要文件 main.cpp:包含主函数和游戏循环。 tetris.h:包含游戏逻辑的头文件。 tetris.cpp:包含游戏逻辑的实现文件。 运行说明 确保安装SFML库,以便进行窗口绘制和用户输入处理。
recommend-type

06二十四节气之谷雨模板.pptx

06二十四节气之谷雨模板.pptx
recommend-type

基于Web开发的聊天系统(模拟QQ的基本功能)源码+项目说明.zip

基于Web开发的聊天系统(模拟QQ的基本功能)源码+项目说明.zip 本项目是一个仿QQ基本功能的前后端分离项目。前端采用了vue.js技术栈,后端采用springboot+netty混合开发。实现了好友申请、好友分组、好友聊天、群管理、群公告、用户群聊等功能。 后端技术栈 1. Spring Boot 2. netty nio 3. WebSocket 4. MyBatis 5. Spring Data JPA 6. Redis 7. MySQL 8. Spring Session 9. Alibaba Druid 10. Gradle #### 前端技术栈 1. Vue 3. axios 4. vue-router 5. Vuex 6. WebSocket 7. vue-cli4 8. JavaScript ES6 9. npm 【说明】 【1】项目代码完整且功能都验证ok,确保稳定可靠运行后才上传。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通,帮助解答。 【2】项目主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领
recommend-type

wx302旅游社交小程序-ssm+vue+uniapp.zip(可运行源码+sql文件+文档)

旅游社交小程序功能有管理员和用户。管理员有个人中心,用户管理,每日签到管理,景点推荐管理,景点分类管理,防疫查询管理,美食推荐管理,酒店推荐管理,周边推荐管理,分享圈管理,我的收藏管理,系统管理。用户可以在微信小程序上注册登录,进行每日签到,防疫查询,可以在分享圈里面进行分享自己想要分享的内容,查看和收藏景点以及美食的推荐等操作。因而具有一定的实用性。 本站后台采用Java的SSM框架进行后台管理开发,可以在浏览器上登录进行后台数据方面的管理,MySQL作为本地数据库,微信小程序用到了微信开发者工具,充分保证系统的稳定性。系统具有界面清晰、操作简单,功能齐全的特点,使得旅游社交小程序管理工作系统化、规范化。 管理员可以管理用户信息,可以对用户信息添加修改删除。管理员可以对景点推荐信息进行添加修改删除操作。管理员可以对分享圈信息进行添加,修改,删除操作。管理员可以对美食推荐信息进行添加,修改,删除操作。管理员可以对酒店推荐信息进行添加,修改,删除操作。管理员可以对周边推荐信息进行添加,修改,删除操作。 小程序用户是需要注册才可以进行登录的,登录后在首页可以查看相关信息,并且下面导航可以点击到其他功能模块。在小程序里点击我的,会出现关于我的界面,在这里可以修改个人信息,以及可以点击其他功能模块。用户想要把一些信息分享到分享圈的时候,可以点击新增,然后输入自己想要分享的信息就可以进行分享圈的操作。用户可以在景点推荐里面进行收藏和评论等操作。用户可以在美食推荐模块搜索和查看美食推荐的相关信息。
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依