利用编程从Hbase读取学生成绩,并实现每个学生成绩平均分和每门课程成绩平均分。要求用MapReduce Java API编程
时间: 2024-02-25 07:57:43 浏览: 121
HBase与MapReduce处理操作(基于JavaAPI)
5星 · 资源好评率100%
好的,这个问题需要使用 Hadoop MapReduce 框架来实现。首先,需要编写一个 Mapper 类来解析 HBase 表中的每个行数据,并将学生 ID 和其成绩数据发送给 Reducer。
```java
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.filter.FilterList;
import org.apache.hadoop.hbase.filter.FirstKeyOnlyFilter;
import org.apache.hadoop.hbase.filter.KeyOnlyFilter;
import org.apache.hadoop.hbase.filter.PrefixFilter;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class ScoresMapper extends Mapper<Object, Result, Text, FloatWritable> {
private final Text studentId = new Text();
private final FloatWritable score = new FloatWritable();
public void map(Object key, Result value, Context context) throws IOException, InterruptedException {
// 解析行数据
String rowKey = Bytes.toString(value.getRow());
String[] parts = rowKey.split("\\|");
String studentId = parts[0];
String subject = parts[1];
float score = Bytes.toFloat(value.getValue(Bytes.toBytes("score"), Bytes.toBytes("value")));
// 将学生 ID 和成绩数据发送给 Reducer
context.write(new Text(studentId), new FloatWritable(score));
context.write(new Text(subject), new FloatWritable(score));
}
}
```
接下来,需要编写一个 Reducer 类来计算每个学生的平均分和每门课程的平均分。
```java
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class ScoresReducer extends Reducer<Text, FloatWritable, Text, FloatWritable> {
private final FloatWritable result = new FloatWritable();
public void reduce(Text key, Iterable<FloatWritable> values, Context context) throws IOException, InterruptedException {
List<Float> scores = new ArrayList<Float>();
// 收集所有成绩数据
for (FloatWritable value : values) {
scores.add(value.get());
}
// 计算平均分
float totalScore = 0;
for (Float score : scores) {
totalScore += score;
}
float averageScore = totalScore / scores.size();
// 发送结果给输出
result.set(averageScore);
context.write(key, result);
}
}
```
最后,需要在主函数中配置并运行 MapReduce 作业。
```java
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.filter.FilterList;
import org.apache.hadoop.hbase.filter.FirstKeyOnlyFilter;
import org.apache.hadoop.hbase.filter.KeyOnlyFilter;
import org.apache.hadoop.hbase.filter.PrefixFilter;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
public class ScoresJob {
public static void main(String[] args) throws Exception {
Configuration conf = HBaseConfiguration.create();
// 配置 HBase 表扫描
Scan scan = new Scan();
FilterList filters = new FilterList(FilterList.Operator.MUST_PASS_ALL);
filters.addFilter(new PrefixFilter(Bytes.toBytes("")));
filters.addFilter(new KeyOnlyFilter());
filters.addFilter(new FirstKeyOnlyFilter());
scan.setFilter(filters);
// 配置 MapReduce 作业
Job job = Job.getInstance(conf, "Student Scores");
job.setJarByClass(ScoresJob.class);
TableMapReduceUtil.initTableMapperJob("student_scores", scan, ScoresMapper.class, Text.class, FloatWritable.class, job);
job.setReducerClass(ScoresReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FloatWritable.class);
// 运行作业并等待完成
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
```
这段代码将 HBase 表扫描和 MapReduce 作业配置在一起,并启动作业运行。注意,在这个例子中,我们使用了 HBase 表扫描来过滤出所有的行数据,因此 Mapper 类不需要实现 InputFormat 接口。
阅读全文