帮我写一个基于Vision Transformer将一个图片集进行分类的代码
时间: 2023-03-30 11:01:57 浏览: 100
好的,我可以回答这个问题。以下是一个基于Vision Transformer的图片分类代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
# 定义超参数
batch_size = 32
learning_rate = .001
num_epochs = 10
# 加载数据集
transform = transforms.Compose(
[transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((.5, .5, .5), (.5, .5, .5))])
train_dataset = torchvision.datasets.ImageFolder(root='./train', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = torchvision.datasets.ImageFolder(root='./test', transform=transform)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 定义模型
class VisionTransformer(nn.Module):
def __init__(self, num_classes):
super(VisionTransformer, self).__init__()
self.transformer = nn.TransformerEncoder(nn.TransformerEncoderLayer(d_model=768, nhead=12), num_layers=12)
self.fc = nn.Linear(768, num_classes)
def forward(self, x):
x = self.transformer(x)
x = x.mean(dim=1)
x = self.fc(x)
return x
model = VisionTransformer(num_classes=10)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# 前向传播
outputs = model(images)
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 每100个batch打印一次日志
if (i+1) % 100 == :
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
# 测试模型
with torch.no_grad():
correct =
total =
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size()
correct += (predicted == labels).sum().item()
print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))
```
这个代码使用了PyTorch框架,通过Vision Transformer模型对一个图片集进行分类。具体来说,它将图片集分为训练集和测试集,然后使用数据加载器将它们加载到模型中。模型使用了一个Transformer编码器和一个全连接层,其中Transformer编码器用于提取图片的特征,全连接层用于将这些特征映射到类别标签。在训练过程中,模型使用交叉熵损失函数和Adam优化器进行优化。在测试过程中,模型计算准确率并输出结果。
阅读全文