将docker run -p 8501:8501 -v /mnt/hgfs/data_input_test/tensorflow-yolov4-tflite-master/models/:/models/yolov4 -it tensorflow/serving:latest -e MODEL_NAME=yolov4 --model_base_path=/models/yolov4这行命令装换成k8s yaml文件
时间: 2023-09-09 09:11:37 浏览: 115
要将上述Docker命令转换为Kubernetes YAML文件,您可以按照以下步骤进行操作:
1. 创建一个Deployment YAML文件来定义Pod的部署。创建一个`deployment.yaml`文件,并添加以下内容:
```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: yolov4-deployment
spec:
replicas: 1
selector:
matchLabels:
app: yolov4-app
template:
metadata:
labels:
app: yolov4-app
spec:
containers:
- name: tensorflow-serving
image: tensorflow/serving:latest
ports:
- containerPort: 8501
volumeMounts:
- name: models-volume
mountPath: /models/yolov4
env:
- name: MODEL_NAME
value: yolov4
args: ["--model_base_path=/models/yolov4"]
volumes:
- name: models-volume
hostPath:
path: /mnt/hgfs/data_input_test/tensorflow-yolov4-tflite-master/models/
```
2. 创建一个Service YAML文件来公开Pod。创建一个`service.yaml`文件,并添加以下内容:
```yaml
apiVersion: v1
kind: Service
metadata:
name: yolov4-service
spec:
selector:
app: yolov4-app
ports:
- protocol: TCP
port: 8501
targetPort: 8501
type: NodePort
```
现在,您可以使用kubectl命令将这两个YAML文件应用于Kubernetes集群:
```
kubectl apply -f deployment.yaml
kubectl apply -f service.yaml
```
这将在Kubernetes集群中创建一个名为`yolov4-deployment`的部署和一个名为`yolov4-service`的服务。