activated carbon
时间: 2024-08-14 19:05:00 浏览: 51
活性炭是一种由碳制成的材料,通常是通过燃烧木材、煤或其他有机物质,然后经过物理或化学活化过程得到的。它内部有大量微小的孔隙结构,这使得活性炭具有极高的表面积,能吸附各种有害气体、杂质和色素等。活性炭因其出色的吸附性能,常用于水处理、空气净化、食品工业以及化学品提纯等领域,作为吸附剂或催化剂使用。它的应用还包括去除异味、脱色、去毒以及某些特定化合物的分离。
相关问题
把下面这个Menya E., Olupot P.W., Storz H., Lubwama M. and Kiros Y. (2018) Production and performance of activated carbon from rice husks for removal of natural organic matter from water: A review. Chemical Engineering Research & Design 129, 271-296.改成Journal of cleaner production期刊格式
这是一篇发表在2018年的科学期刊Chemical Engineering Research上的研究论文,题目为"Production and performance of activated carbon from rice husks for removal of natural organic matter from water: A review"。它是由Menya E., Olupot P.W., Storz H., Lubwama M. 和 Kiros Y. 共同合作完成的。该研究论文综述了从稻壳制备活性炭并用于去除水中天然有机物的生产和性能。
Rab GTPases serve as master regulators of membrane trafficking. They can be activated by guanine nucleotide exchange factors (GEF) and be inactivated by GTPase-activating proteins (GAPs). The roles of some GAPs have been explored in Saccharomyces cerevisiae, but are largely unknown in filamentous fungi. Here, we investigated the role of GAP Gyp3 gene, an ortholog of S. cerevisiae Gyp3, in an entomopathogenic fungus, Metarhizium acridum. We found that MaGyp3 is mainly localized to the endoplasmic reticulum (ER) of vegetative hyphae, nuclei of mature conidia, and both ER and nuclei in invasive hyphae. Lack of MaGyp3 caused a decreased tolerance to hyperosmotic stress, heat-shock and UV-B radiation. Moreover, the ΔMaGyp3 mutant showed a significantly decreased pathogenicity owing to delayed germination, reduced appressorium-mediated penetration and impaired invasive growth. Loss of MaGyp3 also caused impaired fungal growth, advanced conidiation and defects in utilization of carbon and nitrogen sources, while overexpression of MaGyp3 exhibited delayed conidiation on nutrient-rich medium and conidiation pattern shift from microcycle conidiation to normal conidiation on nutrient-limited medium. Mavib-1, a tanscription factor invloved in conidiation by affecting nutrient utilizaiton, can directly bind to the promoter of MaGyp3. ΔMaGyp3 and ΔMavib-1 mutants shared similar phenotypes, and overexpression mutants of MaGyp3 and Mavib-1 (Mavib-1-OE) exhibited similar phenotypes in growth, conidiation and pathogenicity. Reintroduction of the Magyp3 driven by strong promoter gpd in ΔMavib-1 mutant recovered the defects in growth and conidiation for dysfunction of Mavib1. Taken together, our findings uncovered the role of GAP3 in a filamentous pathogenic fungus and and illustrated the upstream regulatory mechanism by direct interaction with Mavib-1.
研究表明,GAP Gyp3基因(与酵母菌S. cerevisiae Gyp3的同源基因)在害虫真菌Metarhizium acridum中发挥着重要作用。MaGyp3主要分布于营养菌丝的内质网,成熟孢子的细胞核以及侵染性菌丝的内质网和细胞核。缺乏MaGyp3导致抗高渗应激,热激和UV-B辐射能力降低,并且由于孢子萌发延迟,贴附体介导的侵入受损以及侵染性生长受限,而导致病原性大幅度降低。此外,MaGyp3缺失还导致营养菌丝生长受限,孢子产量增加以及碳氮源利用能力受损。研究发现,Mavib-1,一种参与孢子形成的转录因子,可以直接结合MaGyp3的启动子。综上所述,我们揭示了GAP3在菌丝性病原真菌中的作用,并阐明了Mavib-1通过直接与MaGyp3的互作来调节MaGyp3的上游调控机制。
阅读全文