from sklearn.model_selection import GridSearchCV from sklearn.datasets import make_classification # 定义参数字典和 MLPClassifier 模型 param_grid = { 'hidden_layer_sizes': [(10,), (50,), (100,)], 'activation': ['relu', 'tanh', 'logistic'],#激活函数 'alpha': [0.0001, 0.001, 0.01], } model52 = MLPClassifier(random_state=42) # 进行网格搜索和交叉验证 grid_search5 = GridSearchCV(estimator=model52, param_grid=param_grid, cv=5) grid_search5.fit(merged_train_norm_vec, y_merged_train) # 输出最优参数和最优得分 print('Best parameters: ', grid_search5.best_params_) print('Best score: ', grid_search5.best_score_)修改代码中的学习率和迭代次数
时间: 2024-03-17 17:45:00 浏览: 126
在 `MLPClassifier` 中,可以通过 `learning_rate_init` 参数来设置初始化学习率,也可以通过 `max_iter` 参数来设置最大迭代次数。如果要修改代码中的学习率和迭代次数,可以在参数字典 `param_grid` 中添加对应的参数选项,例如:
```python
from sklearn.model_selection import GridSearchCV
from sklearn.neural_network import MLPClassifier
from sklearn.datasets import make_classification
X, y = make_classification(n_samples=1000, n_features=10, n_informative=5, n_redundant=0, random_state=42)
param_grid = {
'hidden_layer_sizes': [(10,), (50,), (100,)],
'activation': ['relu', 'tanh', 'logistic'],
'alpha': [0.0001, 0.001, 0.01],
'learning_rate_init': [0.001, 0.01, 0.1],
'max_iter': [200, 500, 1000],
}
model = MLPClassifier(random_state=42)
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5)
grid_search.fit(X, y)
print('Best parameters: ', grid_search.best_params_)
print('Best score: ', grid_search.best_score_)
```
在这个例子中,我们添加了 `learning_rate_init` 和 `max_iter` 两个参数选项,并将它们加入到了参数字典 `param_grid` 中。然后使用 `GridSearchCV` 进行网格搜索并交叉验证,得到最佳的一组超参数。
阅读全文