set(zip(*[input_list[i:] for i in range(ngram_range)]))
时间: 2023-12-17 07:04:37 浏览: 100
这是一个将字符串列表转换为 n-gram 的代码段。具体来说,它将输入列表转换为 n 个连续单词的组合,并返回一个集合,其中每个元素都是一个元组,表示一个 n-gram。
解释一下代码的实现过程:首先,`range(ngram_range)`生成一个从0到`ngram_range-1`的整数序列,然后对于每个整数`i`,`input_list[i:]`生成一个从第`i`个单词开始的子列表。接下来,`zip(*[input_list[i:] for i in range(ngram_range)])`将这些子列表拼接在一起,生成一个元组的列表,其中每个元组包含每个子列表的第`j`个元素,这样就得到了所有长度为`ngram_range`的连续单词的组合。最后,用`set()`将这些元组去重并返回一个集合。
相关问题
{ "index.max_ngram_diff": 10, "analysis": { "analyzer": { "my_ngram_analyzer": { "tokenizer": "my_ngram_tokenizer" } }, "tokenizer": { "my_ngram_tokenizer": { "type": "ngram", "min_gram": 1, "max_gram": 10, "token_chars": [ "letter", "digit" ] } } } }
您提供的是Elasticsearch的索引设置和分析器配置示例。该配置使用了ngram分词器创建了一个名为"my_ngram_analyzer"的自定义分析器,并使用了"my_ngram_tokenizer"作为其分词器。
这个分词器将文本按照ngram的方式进行切分,生成包含不同长度的ngram片段。在这个配置中,min_gram参数设置为1,表示最小的ngram片段长度为1个字符;max_gram参数设置为10,表示最大的ngram片段长度为10个字符。
此外,token_chars参数指定了被切分的字符类型,其中"letter"表示字母字符,"digit"表示数字字符。
这个配置可以用于创建一个支持按照ngram方式进行文本搜索和匹配的索引。您可以将此配置应用到您的索引中,以便进行阿拉伯数字的查询或其他需要ngram方式进行文本匹配的场景。
X_train = df.loc[:25000, 'review'].values y_train = df.loc[:25000, 'sentiment'].values X_test = df.loc[25000:, 'review'].values y_test = df.loc[25000:, 'sentiment'].values from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import GridSearchCV tfidf = TfidfVectorizer(strip_accents=None, lowercase=False, preprocessor=None) param_grid = [{'vect__ngram_range': [(1, 1)], 'vect__stop_words': [stop, None], 'vect__tokenizer': [tokenizer, tokenizer_porter], 'clf__penalty': ['l1', 'l2'], 'clf__C': [1.0, 10.0, 100.0]}, {'vect__ngram_range': [(1, 1)], 'vect__stop_words': [stop, None], 'vect__tokenizer': [tokenizer, tokenizer_porter], 'vect__use_idf':[False], 'vect__norm':[None], 'clf__penalty': ['l1', 'l2'], 'clf__C': [1.0, 10.0, 100.0]}, ] lr_tfidf = Pipeline([('vect', tfidf), ('clf', ******)]) # find out how to use pipeline and choose a model to make the document classification gs_lr_tfidf = GridSearchCV(lr_tfidf, param_grid, scoring='accuracy', cv=5, verbose=2, n_jobs=-1) *号部分填什么
You can choose a classifier to use in the pipeline depending on your specific task and the nature of your data. Some commonly used classifiers for document classification include logistic regression, support vector machines (SVM), and naive Bayes.
For example, if you want to use logistic regression as your classifier, you can replace the asterisks with `LogisticRegression(random_state=0)`. The `random_state` parameter ensures that the results are reproducible.
The complete code would look like this:
```
from sklearn.linear_model import LogisticRegression
X_train = df.loc[:25000, 'review'].values
y_train = df.loc[:25000, 'sentiment'].values
X_test = df.loc[25000:, 'review'].values
y_test = df.loc[25000:, 'sentiment'].values
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import GridSearchCV
tfidf = TfidfVectorizer(strip_accents=None,
lowercase=False,
preprocessor=None)
param_grid = [{'vect__ngram_range': [(1, 1)],
'vect__stop_words': [stop, None],
'vect__tokenizer': [tokenizer, tokenizer_porter],
'clf__penalty': ['l1', 'l2'],
'clf__C': [1.0, 10.0, 100.0]},
{'vect__ngram_range': [(1, 1)],
'vect__stop_words': [stop, None],
'vect__tokenizer': [tokenizer, tokenizer_porter],
'vect__use_idf':[False],
'vect__norm':[None],
'clf__penalty': ['l1', 'l2'],
'clf__C': [1.0, 10.0, 100.0]},
]
lr_tfidf = Pipeline([('vect', tfidf),
('clf', LogisticRegression(random_state=0))])
gs_lr_tfidf = GridSearchCV(lr_tfidf, param_grid,
scoring='accuracy',
cv=5,
verbose=2,
n_jobs=-1)
```
阅读全文