lk光流跟踪算法python实现
时间: 2023-07-31 14:11:49 浏览: 201
LK光流跟踪算法是一种经典的基于局部区域的光流估计算法,可以用于视频中目标的运动跟踪。下面是一个简单的Python实现示例:
```python
import numpy as np
from scipy import signal
def compute_lk_optic_flow(img1, img2, window_size=3):
# 计算图像的梯度
Ix = signal.convolve2d(img1, np.array([[-1, 1], [-1, 1]]), mode='same')
Iy = signal.convolve2d(img1, np.array([[-1, -1], [1, 1]]), mode='same')
# 计算Ixx, Iyy, Ixy
Ixx = signal.convolve2d(Ix * Ix, np.ones((window_size, window_size)), mode='same')
Iyy = signal.convolve2d(Iy * Iy, np.ones((window_size, window_size)), mode='same')
Ixy = signal.convolve2d(Ix * Iy, np.ones((window_size, window_size)), mode='same')
# 计算每个像素的光流向量
flow = np.zeros_like(img1)
for i in range(window_size // 2, img1.shape[0] - window_size // 2):
for j in range(window_size // 2, img1.shape[1] - window_size // 2):
# 构建A, b矩阵
A = np.array([[Ixx[i, j], Ixy[i, j]], [Ixy[i, j], Iyy[i, j]]])
b = np.array([-Ix[i, j], -Iy[i, j]])
# 求解光流向量
v = np.linalg.solve(A, b)
flow[i, j] = v[0] ** 2 + v[1] ** 2
return flow
```
使用示例:
```python
import cv2
# 读取两张图像
img1 = cv2.imread('img1.png', cv2.IMREAD_GRAYSCALE)
img2 = cv2.imread('img2.png', cv2.IMREAD_GRAYSCALE)
# 计算光流向量
flow = compute_lk_optic_flow(img1, img2)
# 显示结果
cv2.imshow('Optic Flow', flow)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
注意:这只是一个简单的示例,实际应用中,LK光流跟踪算法需要进行更多的优化和改进,以提高其准确性和鲁棒性。
阅读全文