蜂群算法 ,python实现
时间: 2023-08-04 18:27:08 浏览: 157
蜂群算法是一种基于模拟蜜蜂觅食行为的优化算法,可以用于解决一些优化问题,比如旅行商问题、函数优化等。下面是基于 Python 语言实现蜂群算法的示例代码:
```python
import random
import math
class Bee:
def __init__(self, problem_size):
self.position = [random.uniform(-5, 5) for i in range(problem_size)]
self.fitness = 0
class BeeColony:
def __init__(self, problem_size, colony_size, max_iter):
self.problem_size = problem_size
self.colony_size = colony_size
self.max_iter = max_iter
self.best_solution = None
self.best_fitness = float('inf')
self.colony = [Bee(problem_size) for i in range(colony_size)]
self.trial_limit = int(colony_size / 2)
def evaluate(self, bee):
bee.fitness = sum([bee.position[i] ** 2 for i in range(self.problem_size)])
def send_employee_bees(self):
for i in range(self.colony_size):
index = random.randint(0, self.colony_size - 1)
while index == i:
index = random.randint(0, self.colony_size - 1)
bee = Bee(self.problem_size)
for j in range(self.problem_size):
bee.position[j] = self.colony[i].position[j] + random.uniform(-1, 1) * (self.colony[i].position[j] - self.colony[index].position[j])
if bee.position[j] < -5:
bee.position[j] = -5
elif bee.position[j] > 5:
bee.position[j] = 5
self.evaluate(bee)
if bee.fitness < self.colony[i].fitness:
self.colony[i] = bee
self.colony[i].trials = 0
else:
self.colony[i].trials += 1
def send_onlooker_bees(self):
fitness_sum = sum([math.exp(-self.colony[i].fitness) for i in range(self.colony_size)])
for i in range(self.colony_size):
probability = math.exp(-self.colony[i].fitness) / fitness_sum
if random.uniform(0, 1) < probability:
index = random.randint(0, self.colony_size - 1)
while index == i:
index = random.randint(0, self.colony_size - 1)
bee = Bee(self.problem_size)
for j in range(self.problem_size):
bee.position[j] = self.colony[i].position[j] + random.uniform(-1, 1) * (self.colony[i].position[j] - self.colony[index].position[j])
if bee.position[j] < -5:
bee.position[j] = -5
elif bee.position[j] > 5:
bee.position[j] = 5
self.evaluate(bee)
if bee.fitness < self.colony[i].fitness:
self.colony[i] = bee
self.colony[i].trials = 0
else:
self.colony[i].trials += 1
def send_scout_bees(self):
for i in range(self.colony_size):
if self.colony[i].trials > self.trial_limit:
self.colony[i] = Bee(self.problem_size)
self.evaluate(self.colony[i])
def optimize(self):
for i in range(self.colony_size):
self.evaluate(self.colony[i])
if self.colony[i].fitness < self.best_fitness:
self.best_fitness = self.colony[i].fitness
self.best_solution = self.colony[i].position
iter = 0
while iter < self.max_iter:
self.send_employee_bees()
self.send_onlooker_bees()
self.send_scout_bees()
for i in range(self.colony_size):
if self.colony[i].fitness < self.best_fitness:
self.best_fitness = self.colony[i].fitness
self.best_solution = self.colony[i].position
iter += 1
return self.best_solution, self.best_fitness
```
在这个示例代码中,`Bee` 类表示一个蜜蜂,包含了实数向量 `position` 和适应度值 `fitness` 等属性。`BeeColony` 类表示整个蜂群,包含了问题的大小 `problem_size`,蜂群的大小 `colony_size`,最大迭代次数 `max_iter`,以及最优解和最优适应度等属性。`send_employee_bees`、`send_onlooker_bees` 和 `send_scout_bees` 分别表示蜜蜂的三种角色:员工蜂、观察蜂和侦查蜂。整个优化过程在 `optimize` 方法中实现,先进行初始化,然后进行迭代优化,最后返回最优解和最优适应度。
阅读全文