人工蜂群算法python
时间: 2023-07-10 16:19:45 浏览: 99
好的,以下是一个简单的人工蜂群算法的 Python 代码示例:
```python
import numpy as np
# 蜜蜂类
class Bee:
def __init__(self, pos, val):
self.pos = pos # 蜜蜂位置
self.val = val # 蜜蜂价值
# 生成随机初始蜜蜂群
def generate_bees(num_bees, num_params, lb, ub):
bees = []
for i in range(num_bees):
pos = lb + (ub - lb) * np.random.rand(num_params)
val = evaluate(pos)
bee = Bee(pos, val)
bees.append(bee)
return bees
# 计算蜜蜂的适应度值
def evaluate(pos):
val = np.sum(pos ** 2)
return val
# 更新蜜蜂位置
def update_bee_pos(bee, patch_size, lb, ub):
new_pos = bee.pos + patch_size * (2 * np.random.rand(len(bee.pos)) - 1)
new_pos = np.clip(new_pos, lb, ub)
new_val = evaluate(new_pos)
if new_val < bee.val:
bee.pos = new_pos
bee.val = new_val
# 执行人工蜂群算法
def abc(num_bees, num_params, max_iter, patch_size):
lb = -5
ub = 5
bees = generate_bees(num_bees, num_params, lb, ub)
best_val = float('inf')
best_pos = None
for i in range(max_iter):
for j in range(num_bees):
if j % 3 == 0:
k = np.random.randint(num_bees)
while k == j:
k = np.random.randint(num_bees)
if bees[j].val < bees[k].val:
update_bee_pos(bees[j], patch_size, lb, ub)
elif j % 3 == 1:
k = np.random.randint(num_bees)
while k == j:
k = np.random.randint(num_bees)
if bees[j].val < bees[k].val:
update_bee_pos(bees[j], patch_size, lb, ub)
else:
k = np.random.randint(num_bees)
while k == j:
k = np.random.randint(num_bees)
if bees[j].val < bees[k].val:
update_bee_pos(bees[j], patch_size, lb, ub)
else:
k1 = np.random.randint(num_bees)
while k1 == j:
k1 = np.random.randint(num_bees)
k2 = np.random.randint(num_bees)
while k2 == j or k2 == k1:
k2 = np.random.randint(num_bees)
phi = np.random.rand()
new_pos = bees[j].pos + phi * (bees[k1].pos - bees[k2].pos)
new_pos = np.clip(new_pos, lb, ub)
new_val = evaluate(new_pos)
if new_val < bees[j].val:
bees[j].pos = new_pos
bees[j].val = new_val
for bee in bees:
if bee.val < best_val:
best_val = bee.val
best_pos = bee.pos
print('Iteration:', i+1, ' Best Value:', best_val)
return best_val, best_pos
```
注意,这只是一个简单的示例,实际运行效果可能需要根据具体问题进行调整。
阅读全文