人工蜂群算法 python
时间: 2023-11-10 20:04:14 浏览: 138
python实现人工蜂群算法
人工蜂群算法(Artificial Bee Colony Algorithm,ABC算法)是一种基于蜜蜂觅食行为的优化算法,常用于解决函数优化问题。以下是一个简单的 Python 实现:
```python
import random
import math
# 目标函数
def func(x):
return math.sin(x)
# ABC 算法
def abc(max_iter, n, limit):
# 初始化种群
population = []
for i in range(n):
population.append(random.uniform(-10, 10))
# 迭代
for t in range(max_iter):
# 雇佣蜜蜂阶段
for i in range(n):
# 随机选择一个不等于 i 的蜜蜂
k = random.randint(0, n-1)
while k == i:
k = random.randint(0, n-1)
# 生成新解
v = population[i] + random.uniform(-1, 1) * (population[i] - population[k])
# 判断是否越界
if v < -10:
v = -10
elif v > 10:
v = 10
# 计算适应度
fv = func(v)
fi = func(population[i])
# 更新种群
if fv < fi:
population[i] = v
# 观察蜜蜂阶段
for i in range(n):
# 生成新解
v = random.uniform(-10, 10)
# 判断是否越界
if v < -10:
v = -10
elif v > 10:
v = 10
# 计算适应度
fv = func(v)
fi = func(population[i])
# 更新种群
if fv < fi:
population[i] = v
# 侦查蜜蜂阶段
for i in range(n):
# 生成新解
v = random.uniform(-10, 10)
# 判断是否越界
if v < -10:
v = -10
elif v > 10:
v = 10
# 计算适应度
fv = func(v)
fi = func(population[i])
# 更新种群
if fv < fi:
population[i] = v
# 判断是否收敛
best = min(population, key=func)
if func(best) < limit:
break
return best
# 示例
best = abc(100, 50, 0.001)
print(best)
```
阅读全文