人工蜂群算法python
时间: 2023-10-08 09:06:54 浏览: 94
python实现人工蜂群算法
人工蜂群算法(Artificial Bee Colony Algorithm,简称ABC算法)是一种新兴的智能优化算法,它的灵感来源于蜜蜂采蜜的行为。以下是一个使用Python实现ABC算法的示例代码:
```python
import random
import math
# 目标函数
def func(x):
return x*x
# ABC算法
def abc_algorithm(dimension, search_range, max_iter, limit):
# 初始化蜜蜂个体
pop_size = limit * dimension
pop_pos = []
pop_val = []
for i in range(pop_size):
pos = []
for j in range(dimension):
pos.append(random.uniform(search_range[j][0], search_range[j][1]))
val = func(pos)
pop_pos.append(pos)
pop_val.append(val)
# 记录最优解
best_val = min(pop_val)
best_pos = pop_pos[pop_val.index(best_val)]
# 迭代搜索
for iter in range(max_iter):
# employed bees phase
for i in range(pop_size):
# 随机选取一个不等于i的蜜蜂
k = i
while k == i:
k = random.randint(0, pop_size-1)
# 随机选择一个维度
j = random.randint(0, dimension-1)
# 生成新解
phi = random.uniform(-1, 1)
new_pos = pop_pos[i].copy()
new_pos[j] = pop_pos[i][j] + phi * (pop_pos[i][j] - pop_pos[k][j])
new_pos[j] = max(new_pos[j], search_range[j][0])
new_pos[j] = min(new_pos[j], search_range[j][1])
new_val = func(new_pos)
# 更新解
if new_val < pop_val[i]:
pop_pos[i] = new_pos
pop_val[i] = new_val
else:
limit -= 1
# 更新最优解
if new_val < best_val:
best_val = new_val
best_pos = new_pos
# 判断是否达到搜索次数上限
if limit == 0:
return best_val, best_pos
# onlooker bees phase
fitness_sum = sum([1 / v for v in pop_val])
prob = [1 / (v * fitness_sum) for v in pop_val]
selected = []
for i in range(pop_size):
r = random.uniform(0, 1)
accu = 0
for j, p in enumerate(prob):
accu += p
if r <= accu:
selected.append(j)
break
for i in selected:
k = i
while k == i:
k = random.randint(0, pop_size-1)
j = random.randint(0, dimension-1)
phi = random.uniform(-1, 1)
new_pos = pop_pos[i].copy()
new_pos[j] = pop_pos[i][j] + phi * (pop_pos[i][j] - pop_pos[k][j])
new_pos[j] = max(new_pos[j], search_range[j][0])
new_pos[j] = min(new_pos[j], search_range[j][1])
new_val = func(new_pos)
if new_val < pop_val[i]:
pop_pos[i] = new_pos
pop_val[i] = new_val
else:
limit -= 1
if new_val < best_val:
best_val = new_val
best_pos = new_pos
if limit == 0:
return best_val, best_pos
# scout bees phase
for i in range(pop_size):
if limit == 0:
return best_val, best_pos
if pop_val[i] == max(pop_val):
pos = []
for j in range(dimension):
pos.append(random.uniform(search_range[j][0], search_range[j][1]))
val = func(pos)
pop_pos[i] = pos
pop_val[i] = val
limit -= 1
return best_val, best_pos
# 测试
if __name__ == '__main__':
# 定义搜索空间和参数
dimension = 2
search_range = [(-5, 5)] * dimension
max_iter = 1000
limit = 100
# 运行ABC算法
best_val, best_pos = abc_algorithm(dimension, search_range, max_iter, limit)
# 输出结果
print('best_val:', best_val)
print('best_pos:', best_pos)
```
在上述代码中,`func`函数表示要优化的目标函数,`abc_algorithm`函数是ABC算法的实现。其中,`dimension`表示解向量维度,`search_range`表示搜索空间,`max_iter`表示最大迭代次数,`limit`表示每个蜜蜂最多搜索次数。在函数中,首先初始化蜜蜂个体,并记录最优解。然后进行迭代搜索,分别进行雇佣蜂阶段、观察蜂阶段和侦查蜂阶段。最终返回搜索结果。
阅读全文