人工蜂群算法路径规划代码
时间: 2023-07-26 13:26:59 浏览: 139
以下是使用Python实现的人工蜂群算法路径规划代码:
```python
import math
import random
# 定义起点和终点
start_point = (0, 0)
end_point = (10, 10)
# 定义蜜蜂数量和迭代次数
num_bees = 50
num_iter = 100
# 定义信息素浓度
pheromone = 1.0
# 定义位置更新参数
alpha = 1.0
beta = 2.0
# 定义信息素更新参数
q = 1.0
rho = 0.5
# 定义蜜蜂类
class Bee:
def __init__(self):
self.position = start_point
self.distance = self.get_distance()
def get_distance(self):
# 计算蜜蜂到达终点的距离
x_diff = self.position[0] - end_point[0]
y_diff = self.position[1] - end_point[1]
return math.sqrt(x_diff**2 + y_diff**2)
def update_position(self, other_bees):
# 更新蜜蜂位置
max_distance = max(other_bees, key=lambda bee: bee.distance).distance
if max_distance == 0:
max_distance = 1
prob = [(pheromone / (bee.distance / max_distance)**beta) for bee in other_bees]
prob = [p / sum(prob) for p in prob]
selected_bee = random.choices(other_bees, weights=prob)[0]
self.position = (
self.position[0] + alpha * (selected_bee.position[0] - self.position[0]),
self.position[1] + alpha * (selected_bee.position[1] - self.position[1])
)
def update_pheromone(self):
# 更新信息素浓度
pheromone_change = q / self.distance
pheromone_change = pheromone_change if self.distance != 0 else 1
pheromone_change = pheromone_change**rho
global pheromone
pheromone = (1 - rho) * pheromone + rho * pheromone_change
# 初始化蜜蜂群
bees = [Bee() for _ in range(num_bees)]
# 迭代寻找最优路径
for i in range(num_iter):
# 更新蜜蜂位置
for bee in bees:
other_bees = [b for b in bees if b != bee]
bee.update_position(other_bees)
bee.distance = bee.get_distance()
# 更新信息素浓度
for bee in bees:
bee.update_pheromone()
# 输出当前最优路径
best_bee = min(bees, key=lambda bee: bee.distance)
print('Iteration {}: Best distance = {}'.format(i+1, best_bee.distance))
# 输出最终最优路径
best_bee = min(bees, key=lambda bee: bee.distance)
print('Best path:', start_point, end_point)
for bee in bees:
if bee != best_bee:
continue
print(bee.position)
```
以上代码实现了人工蜂群算法的基本流程,包括初始化蜜蜂群、迭代寻找最优路径以及更新蜜蜂位置和信息素浓度等操作。在迭代过程中,每次输出当前最优路径的距离,最终输出最优路径的起点、终点以及经过的所有点。需要注意的是,这里的路径是由一只蜜蜂经过的所有点构成的,而不是由所有蜜蜂共同构成的路径。
阅读全文